Design, Synthesis, Evaluation, and SAR of 5-Phenylisoindoline Derivatives, a Potent Class of Small-Molecule Inhibitors Targeting the Programmed Cell Death-1/Programmed Cell Death-Ligand 1 (PD-1/PD-L1) Interaction
{"title":"Design, Synthesis, Evaluation, and SAR of 5-Phenylisoindoline Derivatives, a Potent Class of Small-Molecule Inhibitors Targeting the Programmed Cell Death-1/Programmed Cell Death-Ligand 1 (PD-1/PD-L1) Interaction","authors":"Tian Lu, Jiyi Zhang, Qiyu Chen, Mengyue Ni, Jingwen Zhang, Yufei Wu, Ruining Jia, Yuji Wang","doi":"10.1021/acs.jmedchem.4c02206","DOIUrl":null,"url":null,"abstract":"A novel series of 5-phenylisoindoline derivatives were designed, synthesized, and evaluated for their activity to inhibit the interaction of PD-1/PD-L1 through the homogeneous time-resolved fluorescence assay. Meanwhile, structure-activity relationships were discussed according to both experiments and calculations. Several compounds exhibited potent activity with an IC<sub>50</sub> value less than 10 nM, especially <b>D6</b> (4.8 nM). <b>D6</b> could promote IFN-γ secretion and reduce the proportion of PD-L1 late apoptosis at 100 nM in the coculture model of peripheral blood mononuclear cells and hPD-L1-FC. Beyond this, the in vitro model showed <b>D6</b> could lead to the weakening of migration caused by the PD-1/PD-L1 axis. Furthermore, <b>D6</b> also displayed dose-dependent and low-toxic efficacy in the MC38 mouse tumor model with the tumor growth inhibition of 52.8% (20 mg/kg, ip) and 64.4% (160 mg/kg, i.g.). Mechanistic investigations suggested that <b>D6</b> could activate the immune microenvironment in the tumor. Thus, <b>D6</b> is a promising small molecule lead for blocking PD-1/PD-L1.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"48 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02206","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel series of 5-phenylisoindoline derivatives were designed, synthesized, and evaluated for their activity to inhibit the interaction of PD-1/PD-L1 through the homogeneous time-resolved fluorescence assay. Meanwhile, structure-activity relationships were discussed according to both experiments and calculations. Several compounds exhibited potent activity with an IC50 value less than 10 nM, especially D6 (4.8 nM). D6 could promote IFN-γ secretion and reduce the proportion of PD-L1 late apoptosis at 100 nM in the coculture model of peripheral blood mononuclear cells and hPD-L1-FC. Beyond this, the in vitro model showed D6 could lead to the weakening of migration caused by the PD-1/PD-L1 axis. Furthermore, D6 also displayed dose-dependent and low-toxic efficacy in the MC38 mouse tumor model with the tumor growth inhibition of 52.8% (20 mg/kg, ip) and 64.4% (160 mg/kg, i.g.). Mechanistic investigations suggested that D6 could activate the immune microenvironment in the tumor. Thus, D6 is a promising small molecule lead for blocking PD-1/PD-L1.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.