Multifunctional Luffa Sponge Hydrogel with High Mechanical Strength, Fatigue Resistance, and Ionic Conductivity for Monitoring Human Vital Signs

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pusen Cao, Jie Wei, Tingting Zhang, Huanyang Deng, Yilei Han, Zhenghang Chen, Yuxia Chen, Yong Guo, Chao Ma
{"title":"Multifunctional Luffa Sponge Hydrogel with High Mechanical Strength, Fatigue Resistance, and Ionic Conductivity for Monitoring Human Vital Signs","authors":"Pusen Cao, Jie Wei, Tingting Zhang, Huanyang Deng, Yilei Han, Zhenghang Chen, Yuxia Chen, Yong Guo, Chao Ma","doi":"10.1002/adfm.202501131","DOIUrl":null,"url":null,"abstract":"Biomass-based multifunctional hydrogels with high mechanical strength, fatigue resistance, and electrical conductivity are promising materials for the fabrication of flexible electronic devices. However, achieving mutually exclusive properties simultaneously remains challenging. Herein, a novel luffa sponge (LS) composite multi-functional hydrogel (WLSHG) is prepared. The LS is dignified to create a flexible 3D skeleton, which is then polymerized with polyacrylamide in situ using a tannic acid–ferric ions reoxidation system. Benefiting from the strong physical support of the LS skeleton and multiple interactions between molecules in the system, synergistically enhanced the mechanical properties of the hydrogel. The compressive strength and modulus of the WLSHG increased by 557% and 2000%, respectively, compared with the pristine hydrogels. And the honeycomb-like microchannels in the LS bundle facilitated efficient ion transport, resulting in an ionic conductivity of 0.124 S m<sup>−1</sup> for WLSHG. The WLSHG-based flexible strain sensor exhibited excellent sensitivity (2.03 kPa<sup>−1</sup>) and stability (&gt;1000 cycles) over a wide pressure range. By integrating this sensor into an array and using Internet of Things and machine learning technologies, its ability is successfully demonstrated to accurately recognize human sitting position and gait patterns. This study presents a promising approach for fabricating high-performance biomass-based hydrogels for flexible electronic devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"19 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202501131","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomass-based multifunctional hydrogels with high mechanical strength, fatigue resistance, and electrical conductivity are promising materials for the fabrication of flexible electronic devices. However, achieving mutually exclusive properties simultaneously remains challenging. Herein, a novel luffa sponge (LS) composite multi-functional hydrogel (WLSHG) is prepared. The LS is dignified to create a flexible 3D skeleton, which is then polymerized with polyacrylamide in situ using a tannic acid–ferric ions reoxidation system. Benefiting from the strong physical support of the LS skeleton and multiple interactions between molecules in the system, synergistically enhanced the mechanical properties of the hydrogel. The compressive strength and modulus of the WLSHG increased by 557% and 2000%, respectively, compared with the pristine hydrogels. And the honeycomb-like microchannels in the LS bundle facilitated efficient ion transport, resulting in an ionic conductivity of 0.124 S m−1 for WLSHG. The WLSHG-based flexible strain sensor exhibited excellent sensitivity (2.03 kPa−1) and stability (>1000 cycles) over a wide pressure range. By integrating this sensor into an array and using Internet of Things and machine learning technologies, its ability is successfully demonstrated to accurately recognize human sitting position and gait patterns. This study presents a promising approach for fabricating high-performance biomass-based hydrogels for flexible electronic devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信