Pusen Cao, Jie Wei, Tingting Zhang, Huanyang Deng, Yilei Han, Zhenghang Chen, Yuxia Chen, Yong Guo, Chao Ma
{"title":"Multifunctional Luffa Sponge Hydrogel with High Mechanical Strength, Fatigue Resistance, and Ionic Conductivity for Monitoring Human Vital Signs","authors":"Pusen Cao, Jie Wei, Tingting Zhang, Huanyang Deng, Yilei Han, Zhenghang Chen, Yuxia Chen, Yong Guo, Chao Ma","doi":"10.1002/adfm.202501131","DOIUrl":null,"url":null,"abstract":"Biomass-based multifunctional hydrogels with high mechanical strength, fatigue resistance, and electrical conductivity are promising materials for the fabrication of flexible electronic devices. However, achieving mutually exclusive properties simultaneously remains challenging. Herein, a novel luffa sponge (LS) composite multi-functional hydrogel (WLSHG) is prepared. The LS is dignified to create a flexible 3D skeleton, which is then polymerized with polyacrylamide in situ using a tannic acid–ferric ions reoxidation system. Benefiting from the strong physical support of the LS skeleton and multiple interactions between molecules in the system, synergistically enhanced the mechanical properties of the hydrogel. The compressive strength and modulus of the WLSHG increased by 557% and 2000%, respectively, compared with the pristine hydrogels. And the honeycomb-like microchannels in the LS bundle facilitated efficient ion transport, resulting in an ionic conductivity of 0.124 S m<sup>−1</sup> for WLSHG. The WLSHG-based flexible strain sensor exhibited excellent sensitivity (2.03 kPa<sup>−1</sup>) and stability (>1000 cycles) over a wide pressure range. By integrating this sensor into an array and using Internet of Things and machine learning technologies, its ability is successfully demonstrated to accurately recognize human sitting position and gait patterns. This study presents a promising approach for fabricating high-performance biomass-based hydrogels for flexible electronic devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"19 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202501131","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biomass-based multifunctional hydrogels with high mechanical strength, fatigue resistance, and electrical conductivity are promising materials for the fabrication of flexible electronic devices. However, achieving mutually exclusive properties simultaneously remains challenging. Herein, a novel luffa sponge (LS) composite multi-functional hydrogel (WLSHG) is prepared. The LS is dignified to create a flexible 3D skeleton, which is then polymerized with polyacrylamide in situ using a tannic acid–ferric ions reoxidation system. Benefiting from the strong physical support of the LS skeleton and multiple interactions between molecules in the system, synergistically enhanced the mechanical properties of the hydrogel. The compressive strength and modulus of the WLSHG increased by 557% and 2000%, respectively, compared with the pristine hydrogels. And the honeycomb-like microchannels in the LS bundle facilitated efficient ion transport, resulting in an ionic conductivity of 0.124 S m−1 for WLSHG. The WLSHG-based flexible strain sensor exhibited excellent sensitivity (2.03 kPa−1) and stability (>1000 cycles) over a wide pressure range. By integrating this sensor into an array and using Internet of Things and machine learning technologies, its ability is successfully demonstrated to accurately recognize human sitting position and gait patterns. This study presents a promising approach for fabricating high-performance biomass-based hydrogels for flexible electronic devices.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.