Jingchen Pu, Mu Mu, Jie Feng, Xiaohui Zhong, Hao Li
{"title":"A fast physics-based perturbation generator of machine learning weather model for efficient ensemble forecasts of tropical cyclone track","authors":"Jingchen Pu, Mu Mu, Jie Feng, Xiaohui Zhong, Hao Li","doi":"10.1038/s41612-025-01009-9","DOIUrl":null,"url":null,"abstract":"<p>Traditional ensemble forecasting based on numerical weather prediction (NWP) models, is constrained by the need for massive computational resources, resulting in limited ensemble sizes. Although emerging artificial intelligence (AI)-based weather models offer high forecast accuracy and improved computational efficiency, they still face considerable challenges in ensemble forecasting applications, due to the unclear error growth dynamic and the lack of suitable ensemble methods in AI-based models. In this study, we propose a fast, physics-constrained perturbation scheme through the self-evolution dynamics of an AI-based weather model for ensemble forecasting of tropical cyclones (TCs). These initial perturbations are conditioned on specific amplitude and spatial characteristics, exhibiting physically reasonable dynamical growth and spatial covariance. Based on this perturbation scheme, the TC track ensemble forecasts within the AI-based model significantly outperform those from the European Centre for Medium-Range Weather Forecasts (ECMWF) for both deterministic and probabilistic metrics. Notably, we conduct TC track forecasts with 2000 members for the first time, achieving further enhanced forecast skills in probability distribution and extreme scenarios of TC movement.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"443 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01009-9","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional ensemble forecasting based on numerical weather prediction (NWP) models, is constrained by the need for massive computational resources, resulting in limited ensemble sizes. Although emerging artificial intelligence (AI)-based weather models offer high forecast accuracy and improved computational efficiency, they still face considerable challenges in ensemble forecasting applications, due to the unclear error growth dynamic and the lack of suitable ensemble methods in AI-based models. In this study, we propose a fast, physics-constrained perturbation scheme through the self-evolution dynamics of an AI-based weather model for ensemble forecasting of tropical cyclones (TCs). These initial perturbations are conditioned on specific amplitude and spatial characteristics, exhibiting physically reasonable dynamical growth and spatial covariance. Based on this perturbation scheme, the TC track ensemble forecasts within the AI-based model significantly outperform those from the European Centre for Medium-Range Weather Forecasts (ECMWF) for both deterministic and probabilistic metrics. Notably, we conduct TC track forecasts with 2000 members for the first time, achieving further enhanced forecast skills in probability distribution and extreme scenarios of TC movement.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.