{"title":"Temperature-based strategy for enhanced nitrogen removal in mainstream via selectively strengthening anammox or denitrification","authors":"Wentao Zhou, Qiong Zhang, Bo Wang, Feng Hou, Hongtao Pang, Yuanyuan Guo, Liang Zhang, Yongzhen Peng","doi":"10.1038/s41545-025-00448-4","DOIUrl":null,"url":null,"abstract":"<p>To address the instability challenges of Partial Nitrification and Anammox (PNA) at low temperatures, this study introduces a temperature-based nitrogen removal process and demonstrates its feasibility in a pilot-scale system. The temperature-based strategy allows for the selective enhancement of anammox at higher temperatures (>20 °C) or denitrification at moderate and lower temperatures (≤20 °C). Nitrogen removal efficiencies of 93.8%, 72.1%, and 59.1% were achieved under >20 °C, 15–20 °C, and <15 °C, with corresponding effluent qualities of 3.0 mg/L, 9.6 mg/L, and 13.7 mg/L. As temperatures decreased, anammox contributions to nitrogen removal weakened from 88.4% to 8.2%, while denitrification contributions increased from 10.1% to 90.1%. Anammox bacteria exhibit a competitive advantage over denitrifying bacteria at higher temperatures, evidenced by the abundance of <i>Candidatus Kuenenia</i> at 7.13%. <i>Denitratesoma</i> was enriched to 3.47% at moderate and low temperatures, effectively supporting nitrogen removal robustness. This study provides insights into the seasonal optimization of mainstream anammox processes.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"183 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00448-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To address the instability challenges of Partial Nitrification and Anammox (PNA) at low temperatures, this study introduces a temperature-based nitrogen removal process and demonstrates its feasibility in a pilot-scale system. The temperature-based strategy allows for the selective enhancement of anammox at higher temperatures (>20 °C) or denitrification at moderate and lower temperatures (≤20 °C). Nitrogen removal efficiencies of 93.8%, 72.1%, and 59.1% were achieved under >20 °C, 15–20 °C, and <15 °C, with corresponding effluent qualities of 3.0 mg/L, 9.6 mg/L, and 13.7 mg/L. As temperatures decreased, anammox contributions to nitrogen removal weakened from 88.4% to 8.2%, while denitrification contributions increased from 10.1% to 90.1%. Anammox bacteria exhibit a competitive advantage over denitrifying bacteria at higher temperatures, evidenced by the abundance of Candidatus Kuenenia at 7.13%. Denitratesoma was enriched to 3.47% at moderate and low temperatures, effectively supporting nitrogen removal robustness. This study provides insights into the seasonal optimization of mainstream anammox processes.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.