{"title":"CFT phase transition analysis of charged, rotating black holes in D=4 : A holographic thermodynamics approach","authors":"Abhishek Baruah, Prabwal Phukon","doi":"10.1103/physrevd.111.066022","DOIUrl":null,"url":null,"abstract":"We investigate the holographic thermodynamics of 4-D Kerr-Newman anti–de Sitter (AdS) black holes, focusing on the conformal thermal states that are dual to these black holes. We explore the thermodynamic behavior within specific ensembles characterized by fixed sets of variables: (</a:mo>Q</a:mi>,</a:mo>J</a:mi>,</a:mo>V</a:mi>,</a:mo>C</a:mi>)</a:mo></a:math>, <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mrow><h:mo stretchy=\"false\">(</h:mo><h:mi mathvariant=\"script\">Q</h:mi><h:mo>,</h:mo><h:mi mathvariant=\"normal\">Ω</h:mi><h:mo>,</h:mo><h:mi mathvariant=\"script\">V</h:mi><h:mo>,</h:mo><h:mi>C</h:mi><h:mo stretchy=\"false\">)</h:mo></h:mrow></h:math>, <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mrow><o:mo stretchy=\"false\">(</o:mo><o:mi>φ</o:mi><o:mo>,</o:mo><o:mi mathvariant=\"normal\">Ω</o:mi><o:mo>,</o:mo><o:mi mathvariant=\"script\">V</o:mi><o:mo>,</o:mo><o:mi>C</o:mi><o:mo stretchy=\"false\">)</o:mo></o:mrow></o:math>, <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mrow><u:mo stretchy=\"false\">(</u:mo><u:mi>φ</u:mi><u:mo>,</u:mo><u:mi mathvariant=\"script\">J</u:mi><u:mo>,</u:mo><u:mi mathvariant=\"script\">V</u:mi><u:mo>,</u:mo><u:mi>C</u:mi><u:mo stretchy=\"false\">)</u:mo></u:mrow></u:math>, (</ab:mo>Q</ab:mi>,</ab:mo>Ω</ab:mi>,</ab:mo>p</ab:mi>,</ab:mo>C</ab:mi>)</ab:mo></ab:mrow></ab:math>, and <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mo stretchy=\"false\">(</gb:mo><gb:mi>φ</gb:mi><gb:mo>,</gb:mo><gb:mi mathvariant=\"normal\">Ω</gb:mi><gb:mo>,</gb:mo><gb:mi>p</gb:mi><gb:mo>,</gb:mo><gb:mi>C</gb:mi><gb:mo stretchy=\"false\">)</gb:mo></gb:math>. Here, <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:mi>φ</lb:mi></lb:math>, <nb:math xmlns:nb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><nb:mi mathvariant=\"script\">Q</nb:mi></nb:math>, <qb:math xmlns:qb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><qb:mi mathvariant=\"normal\">Ω</qb:mi></qb:math>, <tb:math xmlns:tb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><tb:mi mathvariant=\"script\">J</tb:mi></tb:math>, <wb:math xmlns:wb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wb:mi>p</wb:mi></wb:math>, <yb:math xmlns:yb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><yb:mi mathvariant=\"script\">V</yb:mi></yb:math>, and <bc:math xmlns:bc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><bc:mi>C</bc:mi></bc:math> represent the electric potential, electric charge, angular velocity, angular momentum, conformal field theory (CFT) pressure, CFT volume, and central charge, respectively. The inclusion of both charge and momentum significantly enriches the regime of phase transitions, leading to a variety of phenomena including first-order van der Waals-type phase transitions, (de)confinement phase transitions, Davies-type phase transitions, and second-order superfluid <dc:math xmlns:dc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><dc:mi>λ</dc:mi></dc:math>-type phase transitions. Notably, the introduction of the CFT pressure variable allows us to identify phase transitions and critical behavior in the <fc:math xmlns:fc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fc:mo stretchy=\"false\">(</fc:mo><fc:mi mathvariant=\"script\">Q</fc:mi><fc:mo>,</fc:mo><fc:mi mathvariant=\"normal\">Ω</fc:mi><fc:mo>,</fc:mo><fc:mi>p</fc:mi><fc:mo>,</fc:mo><fc:mi>C</fc:mi><fc:mo stretchy=\"false\">)</fc:mo></fc:math> and <lc:math xmlns:lc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lc:mo stretchy=\"false\">(</lc:mo><lc:mi>φ</lc:mi><lc:mo>,</lc:mo><lc:mi mathvariant=\"normal\">Ω</lc:mi><lc:mo>,</lc:mo><lc:mi>p</lc:mi><lc:mo>,</lc:mo><lc:mi>C</lc:mi><lc:mo stretchy=\"false\">)</lc:mo></lc:math> ensembles, which had not been previously observed. This study underscores the complexity and richness of phase transitions in these systems due to the inclusion of both charge and angular momentum. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"36 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.066022","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the holographic thermodynamics of 4-D Kerr-Newman anti–de Sitter (AdS) black holes, focusing on the conformal thermal states that are dual to these black holes. We explore the thermodynamic behavior within specific ensembles characterized by fixed sets of variables: (Q,J,V,C), (Q,Ω,V,C), (φ,Ω,V,C), (φ,J,V,C), (Q,Ω,p,C), and (φ,Ω,p,C). Here, φ, Q, Ω, J, p, V, and C represent the electric potential, electric charge, angular velocity, angular momentum, conformal field theory (CFT) pressure, CFT volume, and central charge, respectively. The inclusion of both charge and momentum significantly enriches the regime of phase transitions, leading to a variety of phenomena including first-order van der Waals-type phase transitions, (de)confinement phase transitions, Davies-type phase transitions, and second-order superfluid λ-type phase transitions. Notably, the introduction of the CFT pressure variable allows us to identify phase transitions and critical behavior in the (Q,Ω,p,C) and (φ,Ω,p,C) ensembles, which had not been previously observed. This study underscores the complexity and richness of phase transitions in these systems due to the inclusion of both charge and angular momentum. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.