{"title":"Universal and Nonuniversal Signatures in the Scaling Functions of Critical Variables","authors":"Gianluca Teza, Attilio L. Stella","doi":"10.1103/physrevlett.134.127102","DOIUrl":null,"url":null,"abstract":"At criticality, the magnetization M</a:mi></a:mrow></a:math> of a <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>d</c:mi></c:math>-dimensional Ising system with <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>N</e:mi></e:math> spins is distributed such that the probability density function of <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mi>m</g:mi><g:mo>=</g:mo><g:mi>M</g:mi><g:mo>/</g:mo><g:msup><g:mrow><g:mi>N</g:mi></g:mrow><g:mrow><g:msub><g:mrow><g:mi>y</g:mi></g:mrow><g:mrow><g:mi>H</g:mi></g:mrow></g:msub><g:mo>/</g:mo><g:mi>d</g:mi></g:mrow></g:msup></g:mrow></g:math>, with <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>y</i:mi><i:mi>H</i:mi></i:msub></i:math> universal exponent, converges to a limit <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>f</k:mi><k:mo stretchy=\"false\">(</k:mo><k:mi>m</k:mi><k:mo stretchy=\"false\">)</k:mo></k:math>. The expectation that <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>f</o:mi></o:math> should furnish a hallmark of universal behavior contrasts with its sensible dependence on nonuniversal features. We show that both nonuniversal amplitudes and universal exponents of leading power law singularities in all large deviation functions are determined by the fact that, due to extensivity, <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mrow><q:mi>f</q:mi><q:mo stretchy=\"false\">(</q:mo><q:mi>m</q:mi><q:mo stretchy=\"false\">)</q:mo><q:msub><q:mrow><q:mo>∼</q:mo></q:mrow><q:mrow><q:mo stretchy=\"false\">|</q:mo><q:mi>m</q:mi><q:mo stretchy=\"false\">|</q:mo><q:mo>≫</q:mo><q:mn>1</q:mn></q:mrow></q:msub><q:mi>exp</q:mi><q:mo stretchy=\"false\">(</q:mo><q:mo>−</q:mo><q:mi>c</q:mi><q:mo stretchy=\"false\">|</q:mo><q:mi>m</q:mi><q:msup><q:mrow><q:mo stretchy=\"false\">|</q:mo></q:mrow><q:mrow><q:mi>δ</q:mi><q:mo>+</q:mo><q:mn>1</q:mn></q:mrow></q:msup><q:mo stretchy=\"false\">)</q:mo></q:mrow></q:math>, with δ</ab:mi>=</ab:mo>y</ab:mi>H</ab:mi></ab:msub>/</ab:mo>(</ab:mo>d</ab:mi>−</ab:mo>y</ab:mi>H</ab:mi></ab:msub>)</ab:mo></ab:math> and <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>c</eb:mi></eb:math> a nonuniversal coefficient. This unexplored scenario implies a universal form of central limit theorem at criticality and is confirmed by exact calculations for mean field Ising models in equilibrium and for anomalous diffusion models, with <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mi>M</gb:mi></gb:math> replaced by displacement and <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mi>N</ib:mi></ib:math> by time. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"36 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.127102","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
At criticality, the magnetization M of a d-dimensional Ising system with N spins is distributed such that the probability density function of m=M/NyH/d, with yH universal exponent, converges to a limit f(m). The expectation that f should furnish a hallmark of universal behavior contrasts with its sensible dependence on nonuniversal features. We show that both nonuniversal amplitudes and universal exponents of leading power law singularities in all large deviation functions are determined by the fact that, due to extensivity, f(m)∼|m|≫1exp(−c|m|δ+1), with δ=yH/(d−yH) and c a nonuniversal coefficient. This unexplored scenario implies a universal form of central limit theorem at criticality and is confirmed by exact calculations for mean field Ising models in equilibrium and for anomalous diffusion models, with M replaced by displacement and N by time. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks