NeuroNella: Automatic identification of neural activity from multielectrode arrays with blind source separation.

Carina Marconi Germer, Dario Farina, Stuart N Baker, Alessandro Del Vecchio
{"title":"NeuroNella: Automatic identification of neural activity from multielectrode arrays with blind source separation.","authors":"Carina Marconi Germer, Dario Farina, Stuart N Baker, Alessandro Del Vecchio","doi":"10.1088/1741-2552/adc5a4","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The identification of individual neuronal activity from multielectrode arrays poses significant challenges, including handling data from numerous electrodes, resolving overlapping action potentials and tracking activity across long recordings. This study introduces NeuroNella, an automated algorithm developed to address these challenges.</p><p><strong>Approach: </strong>NeuroNella employs blind source separation to leverage the sparsity of action potentials in multichannel recordings. It was validated using three datasets, including two publicly available ones: (1) in vitro recordings (252 channels) of retinal ganglion cells from mice with simultaneous ground-truth loose patch data to assess accuracy; (2) a Neuropixel recording from an awake mouse, comprising 374 channels spanning different brain areas, to demonstrate scalability with dense multielectrode configurations in in vivo recordings; and (3) data (32 channels) recorded from the medullary reticular formation in a terminally anaesthetised macaque, to showcase decomposition over long periods of time.</p><p><strong>Main results: </strong>The algorithm exhibited an error rate of less than 1% compared to ground-truth data. It reliably identified individual neurons, detected neuronal activity across a wide amplitude range, and tolerated minor probe shifts, maintaining robustness in prolonged experimental sessions.</p><p><strong>Significance: </strong>NeuroNella provides an automated and efficient method for neuronal activity identification. Its adaptability to diverse dataset, species, and recording configurations underscores its potential to advance studies of neuronal dynamics and facilitate real-time neuronal decoding systems.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adc5a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The identification of individual neuronal activity from multielectrode arrays poses significant challenges, including handling data from numerous electrodes, resolving overlapping action potentials and tracking activity across long recordings. This study introduces NeuroNella, an automated algorithm developed to address these challenges.

Approach: NeuroNella employs blind source separation to leverage the sparsity of action potentials in multichannel recordings. It was validated using three datasets, including two publicly available ones: (1) in vitro recordings (252 channels) of retinal ganglion cells from mice with simultaneous ground-truth loose patch data to assess accuracy; (2) a Neuropixel recording from an awake mouse, comprising 374 channels spanning different brain areas, to demonstrate scalability with dense multielectrode configurations in in vivo recordings; and (3) data (32 channels) recorded from the medullary reticular formation in a terminally anaesthetised macaque, to showcase decomposition over long periods of time.

Main results: The algorithm exhibited an error rate of less than 1% compared to ground-truth data. It reliably identified individual neurons, detected neuronal activity across a wide amplitude range, and tolerated minor probe shifts, maintaining robustness in prolonged experimental sessions.

Significance: NeuroNella provides an automated and efficient method for neuronal activity identification. Its adaptability to diverse dataset, species, and recording configurations underscores its potential to advance studies of neuronal dynamics and facilitate real-time neuronal decoding systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信