Purification and Biochemical Characterization of α-Amylase from Newly Isolated Bacillus Cereus Strain and its Application as an Additive in Breadmaking.
{"title":"Purification and Biochemical Characterization of α-Amylase from Newly Isolated <i>Bacillus Cereus</i> Strain and its Application as an Additive in Breadmaking.","authors":"Lina S Alhazmi, Wafa A Alshehri","doi":"10.33073/pjm-2025-004","DOIUrl":null,"url":null,"abstract":"<p><p>Amylase has numerous applications in the processing food sector, including brewing, animal feed, baking, fruit juice manufacturing, starch syrups, and starch liquefaction. Practical applications have been the primary focus of recent research on novel properties of bacterial α-amylases. Many amylolytic-active bacterial isolates were obtained from samples of organic-rich, salinity-rich soil. Morphological and 16S rRNA gene sequence studies clearly revealed that the organism belongs to <i>Bacillus</i> sp. and was named <i>Bacillus cereus</i> strain GL2 (PP463909.1 (When pH 6.0, 45°C, and 12 hours of incubation were met the optimal growth conditions for the strain produced the highest amount of α-amylase activity. <i>B. cereus</i> strain GL2 α-amylase isoenzyme was purified to homogeneity using Sephacryl™ S-200 chromatography and ammonium sulfate precipitation. The electrophoretic molecular weight of <i>B. cereus</i> α-amylase was 58 kDa. The optimal pH and temperature for measuring α-amylase activity were 50°C and 6.0, respectively. α-Amylase did not change at 50°C. The purified enzyme improves bread texture by reducing stiffness while improving cohesiveness and flexibility. Purified α-amylase was added to the flour, which improved the rheological properties and overall bread quality. As a result, the α-amylase from <i>B. cereus</i> strain GL2 can be used to promote bread-making.</p>","PeriodicalId":94173,"journal":{"name":"Polish journal of microbiology","volume":"74 1","pages":"48-59"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish journal of microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33073/pjm-2025-004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Amylase has numerous applications in the processing food sector, including brewing, animal feed, baking, fruit juice manufacturing, starch syrups, and starch liquefaction. Practical applications have been the primary focus of recent research on novel properties of bacterial α-amylases. Many amylolytic-active bacterial isolates were obtained from samples of organic-rich, salinity-rich soil. Morphological and 16S rRNA gene sequence studies clearly revealed that the organism belongs to Bacillus sp. and was named Bacillus cereus strain GL2 (PP463909.1 (When pH 6.0, 45°C, and 12 hours of incubation were met the optimal growth conditions for the strain produced the highest amount of α-amylase activity. B. cereus strain GL2 α-amylase isoenzyme was purified to homogeneity using Sephacryl™ S-200 chromatography and ammonium sulfate precipitation. The electrophoretic molecular weight of B. cereus α-amylase was 58 kDa. The optimal pH and temperature for measuring α-amylase activity were 50°C and 6.0, respectively. α-Amylase did not change at 50°C. The purified enzyme improves bread texture by reducing stiffness while improving cohesiveness and flexibility. Purified α-amylase was added to the flour, which improved the rheological properties and overall bread quality. As a result, the α-amylase from B. cereus strain GL2 can be used to promote bread-making.