Discovery of a Distinctive Reagent for Divergent Arene Trifluoromethylsulfinylation.

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2025-02-19 eCollection Date: 2025-03-24 DOI:10.1021/jacsau.5c00072
Liuqing Yang, Lu Yu, Lulu Liu, Luyao Wang, Yu Zhong, Fangcan Liang, Chenfengtao Zheng, Ji-Quan Liu, Xiao-Song Xue, Dianhu Zhu
{"title":"Discovery of a Distinctive Reagent for Divergent Arene Trifluoromethylsulfinylation.","authors":"Liuqing Yang, Lu Yu, Lulu Liu, Luyao Wang, Yu Zhong, Fangcan Liang, Chenfengtao Zheng, Ji-Quan Liu, Xiao-Song Xue, Dianhu Zhu","doi":"10.1021/jacsau.5c00072","DOIUrl":null,"url":null,"abstract":"<p><p>Simple and direct arene trifluoromethylsulfinylation is highly desirable in drug design but remains a major challenge. Herein, we report a modular, mild, innate C-H trifluoromethylsulfinylation of a wide variety of arenes via a distinctive trifluoromethylsulfinylating reagent <i>N</i>-hydroxyphthalimide-<i>O</i>-trifluoromethanesulfinate following divergent efficient pathways. This trifluoromethylsulfinylation can be conducted in a redox-neutral manner at room temperature with light-, metal-, and photocatalyst-free mild conditions. Mechanistic studies and density functional theory (DFT) calculations revealed that the success of this approach hinges upon the design of an activated trifluoromethanesulfite ester that proceeds via homolytic cleavage with a very low bond dissociation energy to generate a dummy aminoxyl radical (PINO) and active CF<sub>3</sub>S(O) radical, which could accidentally be transformed into a trifluoromethanesulfonic anhydride, CF<sub>3</sub>S(O)OS(O)CF<sub>3</sub>, for the transfer of the S(O)CF<sub>3</sub> group into an exemplary set of strong EDG-substituted arenes. DFT computation corroborates that this novel reagent can be activated by TfOH via heterolytic cleavage to produce highly active CF<sub>3</sub>S(O)OTf, which is responsible for electrophilic trifluoromethylsulfinylation of the challenging weak EDG-substituted arene substrates through an electrophilic addition-elimination mechanism. Such C-H functionalization using <i>N</i>-hydroxyphthalimide-<i>O</i>-trifluoromethanesulfinate affords an innovative strategy and marked improvement over functionalization with previously developed reagents. Notably, simple and mild conditions, broad reactivities, good functional group compatibility, divergent reaction modes (homolysis and heterolysis), as well as late-stage trifluoromethylsulfinylation (LST) of complex biologically active molecules in these reactions underline the great potential of <i>N</i>-hydroxyphthalimide-<i>O</i>-trifluoromethanesulfinate for the preparation of functionalized drug-like molecules.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 3","pages":"1448-1459"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.5c00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Simple and direct arene trifluoromethylsulfinylation is highly desirable in drug design but remains a major challenge. Herein, we report a modular, mild, innate C-H trifluoromethylsulfinylation of a wide variety of arenes via a distinctive trifluoromethylsulfinylating reagent N-hydroxyphthalimide-O-trifluoromethanesulfinate following divergent efficient pathways. This trifluoromethylsulfinylation can be conducted in a redox-neutral manner at room temperature with light-, metal-, and photocatalyst-free mild conditions. Mechanistic studies and density functional theory (DFT) calculations revealed that the success of this approach hinges upon the design of an activated trifluoromethanesulfite ester that proceeds via homolytic cleavage with a very low bond dissociation energy to generate a dummy aminoxyl radical (PINO) and active CF3S(O) radical, which could accidentally be transformed into a trifluoromethanesulfonic anhydride, CF3S(O)OS(O)CF3, for the transfer of the S(O)CF3 group into an exemplary set of strong EDG-substituted arenes. DFT computation corroborates that this novel reagent can be activated by TfOH via heterolytic cleavage to produce highly active CF3S(O)OTf, which is responsible for electrophilic trifluoromethylsulfinylation of the challenging weak EDG-substituted arene substrates through an electrophilic addition-elimination mechanism. Such C-H functionalization using N-hydroxyphthalimide-O-trifluoromethanesulfinate affords an innovative strategy and marked improvement over functionalization with previously developed reagents. Notably, simple and mild conditions, broad reactivities, good functional group compatibility, divergent reaction modes (homolysis and heterolysis), as well as late-stage trifluoromethylsulfinylation (LST) of complex biologically active molecules in these reactions underline the great potential of N-hydroxyphthalimide-O-trifluoromethanesulfinate for the preparation of functionalized drug-like molecules.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信