Nicholson Collier, Justin M Wozniak, Arindam Fadikar, Abby Stevens, Jonathan Ozik
{"title":"DISTRIBUTED MODEL EXPLORATION WITH EMEWS.","authors":"Nicholson Collier, Justin M Wozniak, Arindam Fadikar, Abby Stevens, Jonathan Ozik","doi":"10.1109/wsc63780.2024.10838848","DOIUrl":null,"url":null,"abstract":"<p><p>As high-performance computing resources have become increasingly available, new modes of applying and experimenting with simulation and other computational tools have become possible. This tutorial presents recent advancements to the Extreme-scale Model Exploration with Swift (EMEWS) framework. EMEWS is a high-performance computing (HPC) model exploration (ME) framework, developed for large-scale analyses (e.g., calibration, optimization) of computational models. We focus on three new use-inspired EMEWS capabilities, improved accessibility through binary installation, a new decoupled architecture (EMEWS DB) and task API for distributing workflows on heterogeneous compute resources, and improved EMEWS project creation capabilities. We present a complete worked example where EMEWS DB is used to connect a Python Bayesian optimization algorithm to worker pools running both locally and on remote compute resources. The example, including an R version, and additional details on EMEWS are made available on a public website.</p>","PeriodicalId":74535,"journal":{"name":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","volume":"2024 ","pages":"72-86"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939112/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wsc63780.2024.10838848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As high-performance computing resources have become increasingly available, new modes of applying and experimenting with simulation and other computational tools have become possible. This tutorial presents recent advancements to the Extreme-scale Model Exploration with Swift (EMEWS) framework. EMEWS is a high-performance computing (HPC) model exploration (ME) framework, developed for large-scale analyses (e.g., calibration, optimization) of computational models. We focus on three new use-inspired EMEWS capabilities, improved accessibility through binary installation, a new decoupled architecture (EMEWS DB) and task API for distributing workflows on heterogeneous compute resources, and improved EMEWS project creation capabilities. We present a complete worked example where EMEWS DB is used to connect a Python Bayesian optimization algorithm to worker pools running both locally and on remote compute resources. The example, including an R version, and additional details on EMEWS are made available on a public website.