Neuroprotective Role of Cyclic AMP Signaling in Dopaminergic Degeneration Induced by a Parkinson's Disease Toxin, Rotenone.

IF 1.6 Q3 CLINICAL NEUROLOGY
NeuroSci Pub Date : 2025-03-11 DOI:10.3390/neurosci6010024
Sazan Ismael, Sarah Baitamouni, Daewoo Lee
{"title":"Neuroprotective Role of Cyclic AMP Signaling in Dopaminergic Degeneration Induced by a Parkinson's Disease Toxin, Rotenone.","authors":"Sazan Ismael, Sarah Baitamouni, Daewoo Lee","doi":"10.3390/neurosci6010024","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopaminergic (DA) neurons in the midbrain. While dopamine precursor levodopa and D2 receptor agonists are commonly used to alleviate PD symptoms, these treatments do not halt or reverse disease progression. Thus, developing effective neuroprotective strategies remains a critical goal. In this study, we explored neuroprotective mechanisms in a <i>Drosophila</i> primary neuronal culture model of PD, created by administering the environmental toxin rotenone. Using the chemogenetic DREADD (designer receptors exclusively activated by designer drugs) system, we selectively activated cAMP signaling in DA neurons within the rotenone-induced model. Our results demonstrate that increasing cAMP signaling via Gs-coupled DREADD (rM3Ds) is protective against DA neurodegeneration. Furthermore, overexpression of the catalytic PKA-C1 subunit fully rescued DA neurons from rotenone-induced degeneration, with this effect restricted to DA neurons where PKA-C1 was specifically overexpressed. These findings reveal that cAMP-PKA signaling activation is neuroprotective in DA neurons against rotenone-induced degeneration, offering promising insights for developing targeted therapeutic strategies to slow or prevent PD pathology progression.</p>","PeriodicalId":74294,"journal":{"name":"NeuroSci","volume":"6 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurosci6010024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopaminergic (DA) neurons in the midbrain. While dopamine precursor levodopa and D2 receptor agonists are commonly used to alleviate PD symptoms, these treatments do not halt or reverse disease progression. Thus, developing effective neuroprotective strategies remains a critical goal. In this study, we explored neuroprotective mechanisms in a Drosophila primary neuronal culture model of PD, created by administering the environmental toxin rotenone. Using the chemogenetic DREADD (designer receptors exclusively activated by designer drugs) system, we selectively activated cAMP signaling in DA neurons within the rotenone-induced model. Our results demonstrate that increasing cAMP signaling via Gs-coupled DREADD (rM3Ds) is protective against DA neurodegeneration. Furthermore, overexpression of the catalytic PKA-C1 subunit fully rescued DA neurons from rotenone-induced degeneration, with this effect restricted to DA neurons where PKA-C1 was specifically overexpressed. These findings reveal that cAMP-PKA signaling activation is neuroprotective in DA neurons against rotenone-induced degeneration, offering promising insights for developing targeted therapeutic strategies to slow or prevent PD pathology progression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信