Insight into Ca2+- inositol 1,4,5-trisphosphate receptor 2 (IP3R2)-mediated unfolded protein response and apoptosis in scallop Patinopecten yessoensis under high temperature stress
Wenfei Gu , Xiaoxue Ma , Chuanyan Yang , Dongli Jiang , Hongmei Fan , Lingling Wang , Linsheng Song
{"title":"Insight into Ca2+- inositol 1,4,5-trisphosphate receptor 2 (IP3R2)-mediated unfolded protein response and apoptosis in scallop Patinopecten yessoensis under high temperature stress","authors":"Wenfei Gu , Xiaoxue Ma , Chuanyan Yang , Dongli Jiang , Hongmei Fan , Lingling Wang , Linsheng Song","doi":"10.1016/j.cbpb.2025.111092","DOIUrl":null,"url":null,"abstract":"<div><div>Inositol 1,4,5-trisphosphate receptor 2 (IP<sub>3</sub>R2) is an essential Ca<sup>2+</sup> release channel protein located in the endoplasmic reticulum (ER), and plays a significant role in responding to various environmental stimuli. In the present study, the function of IP<sub>3</sub>R2 from Yesso scallop <em>Patinopecten yessoensis</em> (<em>Py</em>IP<sub>3</sub>R2) in regulating the Ca<sup>2+</sup>-mediated unfolded protein response (UPR) and apoptosis after high temperature (25 °C) treatment was investigated. Three MIR domains, one RYDR_ITPR domain, one RIH_assoc domain and one Ion_trans domain were identified in <em>Py</em>IP<sub>3</sub>R2. Both D-myo-inositol-1,4,5-triphosphate (IP3, an activator of IP<sub>3</sub>R) and high temperature significantly upregulated the mRNA expression level of <em>PyIP</em><sub><em>3</em></sub><em>R2</em> and genes related to apoptosis and the UPR, and also increased intracellular Ca<sup>2+</sup> content (<em>p</em> < 0.05). Furthermore, the IP<sub>3</sub>R antagonist 2-aminoethyl diphenylborinate (2-APB) had the opposite effect, decreasing intracellular Ca<sup>2+</sup> content and the mRNA expression level of <em>PyIP</em><sub><em>3</em></sub><em>R2</em>, glucose regulated protein 78 (<em>PyGRP78</em>) and <em>PyCaspase-3</em> (<em>p</em> < 0.05). However, the apoptosis rate and Caspase-3 activity remained comparable to those in the injection control group. These findings indicate that <em>Py</em>IP<sub>3</sub>R2 mediates UPR and apoptosis in scallop haemocytes by regulating Ca<sup>2+</sup>content and distribution, and providing insight into the cellular responses of scallops to high temperature.</div></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":"278 ","pages":"Article 111092"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495925000235","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inositol 1,4,5-trisphosphate receptor 2 (IP3R2) is an essential Ca2+ release channel protein located in the endoplasmic reticulum (ER), and plays a significant role in responding to various environmental stimuli. In the present study, the function of IP3R2 from Yesso scallop Patinopecten yessoensis (PyIP3R2) in regulating the Ca2+-mediated unfolded protein response (UPR) and apoptosis after high temperature (25 °C) treatment was investigated. Three MIR domains, one RYDR_ITPR domain, one RIH_assoc domain and one Ion_trans domain were identified in PyIP3R2. Both D-myo-inositol-1,4,5-triphosphate (IP3, an activator of IP3R) and high temperature significantly upregulated the mRNA expression level of PyIP3R2 and genes related to apoptosis and the UPR, and also increased intracellular Ca2+ content (p < 0.05). Furthermore, the IP3R antagonist 2-aminoethyl diphenylborinate (2-APB) had the opposite effect, decreasing intracellular Ca2+ content and the mRNA expression level of PyIP3R2, glucose regulated protein 78 (PyGRP78) and PyCaspase-3 (p < 0.05). However, the apoptosis rate and Caspase-3 activity remained comparable to those in the injection control group. These findings indicate that PyIP3R2 mediates UPR and apoptosis in scallop haemocytes by regulating Ca2+content and distribution, and providing insight into the cellular responses of scallops to high temperature.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.