Comparative Analysis of Machine Learning Techniques for Heart Rate Prediction Employing Wearable Sensor Data.

IF 2.2 Q2 SPORT SCIENCES
Sports Pub Date : 2025-03-13 DOI:10.3390/sports13030087
Asieh Namazi, Ehsan Modiri, Suzana Blesić, Olivera M Knežević, Dragan M Mirkov
{"title":"Comparative Analysis of Machine Learning Techniques for Heart Rate Prediction Employing Wearable Sensor Data.","authors":"Asieh Namazi, Ehsan Modiri, Suzana Blesić, Olivera M Knežević, Dragan M Mirkov","doi":"10.3390/sports13030087","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring heart rate (HR) is vital for health management and athletic performance, and wearable technology enables scientists to obtain real-time cardiovascular insights. This study compares Machine Learning (ML) techniques, including Long Short-Term Memory (LSTM) networks, Physics-Informed Neural Networks (PINNs), and 1D Convolutional Neural Networks (1D CNNs). Then, we develop a hybrid Singular Spectrum Analysis (SSA)-Augmented ML technique to predict HR using wearable sensor data. Additionally, we investigate the impact of incorporating auxiliary physiological inputs, such as breathing rate (BR) and RR intervals, on predictive accuracy. The study utilizes the cardiorespiratory data acquired through wearable sensors while practising sports, including 126 recordings from 81 participants (53 males, 28 females) engaged in 10 different sports. Physiological signals were collected at 1 Hz using the BioHarness 3.0 (Zephyr Technology, Mangaluru, India). The dataset includes individuals with varied levels of sports experience (beginner, intermediate, and advanced), allowing for a more comprehensive evaluation of HR variability across different expertise levels. Our results demonstrate that the hybrid SSA-LSTM model reaches the lowest prediction error by effectively capturing HR dynamics. Furthermore, integrating HR, BR, and RR data significantly enhances accuracy over single or dual parameter inputs. These findings support adopting multivariate machine learning models for health monitoring, improving HR prediction accuracy for fitness and preventive healthcare.</p>","PeriodicalId":53303,"journal":{"name":"Sports","volume":"13 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sports13030087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring heart rate (HR) is vital for health management and athletic performance, and wearable technology enables scientists to obtain real-time cardiovascular insights. This study compares Machine Learning (ML) techniques, including Long Short-Term Memory (LSTM) networks, Physics-Informed Neural Networks (PINNs), and 1D Convolutional Neural Networks (1D CNNs). Then, we develop a hybrid Singular Spectrum Analysis (SSA)-Augmented ML technique to predict HR using wearable sensor data. Additionally, we investigate the impact of incorporating auxiliary physiological inputs, such as breathing rate (BR) and RR intervals, on predictive accuracy. The study utilizes the cardiorespiratory data acquired through wearable sensors while practising sports, including 126 recordings from 81 participants (53 males, 28 females) engaged in 10 different sports. Physiological signals were collected at 1 Hz using the BioHarness 3.0 (Zephyr Technology, Mangaluru, India). The dataset includes individuals with varied levels of sports experience (beginner, intermediate, and advanced), allowing for a more comprehensive evaluation of HR variability across different expertise levels. Our results demonstrate that the hybrid SSA-LSTM model reaches the lowest prediction error by effectively capturing HR dynamics. Furthermore, integrating HR, BR, and RR data significantly enhances accuracy over single or dual parameter inputs. These findings support adopting multivariate machine learning models for health monitoring, improving HR prediction accuracy for fitness and preventive healthcare.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sports
Sports SPORT SCIENCES-
CiteScore
4.10
自引率
7.40%
发文量
167
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信