Cholesterol Concentration in Cell Membranes and its Impact on Receptor-Ligand Interaction: A Computational Study of ATP-Sensitive Potassium Channels and ATP Binding.
Cesar Millan-Pacheco, Iris N Serratos, Gerardo J Félix-Martínez, Gerardo Blancas-Flores, Alejandra Osorno, Rafael Godínez
{"title":"Cholesterol Concentration in Cell Membranes and its Impact on Receptor-Ligand Interaction: A Computational Study of ATP-Sensitive Potassium Channels and ATP Binding.","authors":"Cesar Millan-Pacheco, Iris N Serratos, Gerardo J Félix-Martínez, Gerardo Blancas-Flores, Alejandra Osorno, Rafael Godínez","doi":"10.1007/s00232-025-00345-4","DOIUrl":null,"url":null,"abstract":"<p><p>This work describes a computer study that looks at how different amounts of cholesterol (0%, 25%, and 50%) in cell membranes change the relationship between ATP and the K<sub>ATP</sub> channel. This could explain why pancreatic beta-cells secrete insulin differently. We use computer simulations of molecular dynamics, calculations of binding free energy, and an integrated oscillator model to look at the electrical activity of beta-cells. There is a need for this kind of multiscale approach right now because cholesterol plays a part in metabolic syndrome and early type 2 diabetes. Our results showed that the increase in cholesterol concentration in the cell membrane affects the electrostatic interactions between ATP and the K<sub>ATP</sub> channel, especially with charged residues in the binding site. Cholesterol can influence the properties of a membrane, including its local charge distribution near the channel. This affects the electrostatic environment around the ATP-binding site, increasing the affinity of ATP for the channel as our results indicated from 0 to 25 and 50% cholesterol (- 141 to - 113 kJ/mol, respectively). Simulating this change in the affinity to ATP of the K<sub>ATP</sub> channels in a model of the electrical activity of the pancreatic beta-cell indicates that even a minimal increase could produce hyperinsulism. The study answers an important research question about how the structure of the membrane affects the function of K<sub>ATP</sub> and, in turn, insulin releases a common feature of metabolic syndrome and early stages of type 2 diabetes.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-025-00345-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This work describes a computer study that looks at how different amounts of cholesterol (0%, 25%, and 50%) in cell membranes change the relationship between ATP and the KATP channel. This could explain why pancreatic beta-cells secrete insulin differently. We use computer simulations of molecular dynamics, calculations of binding free energy, and an integrated oscillator model to look at the electrical activity of beta-cells. There is a need for this kind of multiscale approach right now because cholesterol plays a part in metabolic syndrome and early type 2 diabetes. Our results showed that the increase in cholesterol concentration in the cell membrane affects the electrostatic interactions between ATP and the KATP channel, especially with charged residues in the binding site. Cholesterol can influence the properties of a membrane, including its local charge distribution near the channel. This affects the electrostatic environment around the ATP-binding site, increasing the affinity of ATP for the channel as our results indicated from 0 to 25 and 50% cholesterol (- 141 to - 113 kJ/mol, respectively). Simulating this change in the affinity to ATP of the KATP channels in a model of the electrical activity of the pancreatic beta-cell indicates that even a minimal increase could produce hyperinsulism. The study answers an important research question about how the structure of the membrane affects the function of KATP and, in turn, insulin releases a common feature of metabolic syndrome and early stages of type 2 diabetes.
期刊介绍:
The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function.
Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations.
While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.