Dana M Huvermann, Adam M Berlijn, Andreas Thieme, Friedrich Erdlenbruch, Stefan J Groiss, Andreas Deistung, Manfred Mittelstaedt, Elke Wondzinski, Heike Sievers, Benedikt Frank, Sophia L Göricke, Michael Gliem, Martin Köhrmann, Mario Siebler, Alfons Schnitzler, Christian Bellebaum, Martina Minnerop, Dagmar Timmann, Jutta Peterburs
{"title":"The cerebellum contributes to prediction error coding in reinforcement learning in humans.","authors":"Dana M Huvermann, Adam M Berlijn, Andreas Thieme, Friedrich Erdlenbruch, Stefan J Groiss, Andreas Deistung, Manfred Mittelstaedt, Elke Wondzinski, Heike Sievers, Benedikt Frank, Sophia L Göricke, Michael Gliem, Martin Köhrmann, Mario Siebler, Alfons Schnitzler, Christian Bellebaum, Martina Minnerop, Dagmar Timmann, Jutta Peterburs","doi":"10.1523/JNEUROSCI.1972-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Recent rodent data suggest that the cerebellum - a region typically associated with processing sensory prediction errors (PEs) - also processes PEs in reinforcement learning (RL-PEs; i.e., learning from action outcomes). We tested whether cerebellar output is necessary for RL-PE processing in regions more traditionally associated with action-outcome processing, such as striatum and anterior cingulate cortex. The feedback-related negativity (FRN) was measured as a proxy of cerebral RL-PE processing in a probabilistic feedback learning task using electroencephalography. Two complementary experiments were performed in humans. First, patients with chronic cerebellar stroke (20 male, 6 female) and matched healthy controls (19 male, 7 female) were tested. Second, single-pulse cerebellar transcranial magnetic stimulation (TMS) was applied in healthy participants (7 male, 17 female), thus implementing a virtual lesion approach. Consistent with previous studies, learning of action-outcome associations was intact with only minor changes in behavioural flexibility. Importantly, no significant RL-PE processing was observed in the FRN in patients with cerebellar stroke, and in participants receiving cerebellar TMS. Findings in both experiments show that RL-PE processing in the forebrain depends on cerebellar output in humans, complementing and extending previous findings in rodents.<b>Significance statement</b> While processing of prediction errors in reinforcement learning (RL-PEs) is usually attributed to midbrain and forebrain, recent rodent studies have recorded RL-PE signals in the cerebellum. It is not yet clear whether these cerebellar RL-PE signals contribute to RL-PE processing in the forebrain/midbrain. In the current study, we could show that forebrain RL-PE coding is blunted when the cerebellum is affected across two complementary lesion models (patients with cerebellar stroke, cerebellar TMS). Our results support direct involvement of the cerebellum in RL-PE processing. We can further show that the cerebellum is necessary for RL-PE coding in the forebrain.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1972-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent rodent data suggest that the cerebellum - a region typically associated with processing sensory prediction errors (PEs) - also processes PEs in reinforcement learning (RL-PEs; i.e., learning from action outcomes). We tested whether cerebellar output is necessary for RL-PE processing in regions more traditionally associated with action-outcome processing, such as striatum and anterior cingulate cortex. The feedback-related negativity (FRN) was measured as a proxy of cerebral RL-PE processing in a probabilistic feedback learning task using electroencephalography. Two complementary experiments were performed in humans. First, patients with chronic cerebellar stroke (20 male, 6 female) and matched healthy controls (19 male, 7 female) were tested. Second, single-pulse cerebellar transcranial magnetic stimulation (TMS) was applied in healthy participants (7 male, 17 female), thus implementing a virtual lesion approach. Consistent with previous studies, learning of action-outcome associations was intact with only minor changes in behavioural flexibility. Importantly, no significant RL-PE processing was observed in the FRN in patients with cerebellar stroke, and in participants receiving cerebellar TMS. Findings in both experiments show that RL-PE processing in the forebrain depends on cerebellar output in humans, complementing and extending previous findings in rodents.Significance statement While processing of prediction errors in reinforcement learning (RL-PEs) is usually attributed to midbrain and forebrain, recent rodent studies have recorded RL-PE signals in the cerebellum. It is not yet clear whether these cerebellar RL-PE signals contribute to RL-PE processing in the forebrain/midbrain. In the current study, we could show that forebrain RL-PE coding is blunted when the cerebellum is affected across two complementary lesion models (patients with cerebellar stroke, cerebellar TMS). Our results support direct involvement of the cerebellum in RL-PE processing. We can further show that the cerebellum is necessary for RL-PE coding in the forebrain.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles