An Overview and Comparative Analysis of CRISPR-SpCas9 gRNA Activity Prediction Tools.

IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY
CRISPR Journal Pub Date : 2025-04-01 Epub Date: 2025-03-27 DOI:10.1089/crispr.2024.0058
Hao Yuan, Chunping Song, Huixin Xu, Ying Sun, Christian Anthon, Lars Bolund, Lin Lin, Karim Benabdellah, Ciaran Lee, Yong Hou, Jan Gorodkin, Yonglun Luo
{"title":"An Overview and Comparative Analysis of CRISPR-SpCas9 gRNA Activity Prediction Tools.","authors":"Hao Yuan, Chunping Song, Huixin Xu, Ying Sun, Christian Anthon, Lars Bolund, Lin Lin, Karim Benabdellah, Ciaran Lee, Yong Hou, Jan Gorodkin, Yonglun Luo","doi":"10.1089/crispr.2024.0058","DOIUrl":null,"url":null,"abstract":"<p><p>Design of guide RNA (gRNA) with high efficiency and specificity is vital for successful application of the CRISPR gene editing technology. Although many machine learning (ML) and deep learning (DL)-based tools have been developed to predict gRNA activities, a systematic and unbiased evaluation of their predictive performance is still needed. Here, we provide a brief overview of <i>in silico</i> tools for CRISPR design and assess the CRISPR datasets and statistical metrics used for evaluating model performance. We benchmark seven ML and DL-based CRISPR-Cas9 editing efficiency prediction tools across nine CRISPR datasets covering six cell types and three species. The DL models <i>CRISPRon</i> and <i>DeepHF</i> outperform the other models exhibiting greater accuracy and higher Spearman correlation coefficient across multiple datasets. We compile all CRISPR datasets and <i>in silico</i> prediction tools into a GuideNet resource web portal, aiming to facilitate and streamline the sharing of CRISPR datasets. Furthermore, we summarize features affecting CRISPR gene editing activity, providing important insights into model performance and the further development of more accurate CRISPR prediction models.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"89-104"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/crispr.2024.0058","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Design of guide RNA (gRNA) with high efficiency and specificity is vital for successful application of the CRISPR gene editing technology. Although many machine learning (ML) and deep learning (DL)-based tools have been developed to predict gRNA activities, a systematic and unbiased evaluation of their predictive performance is still needed. Here, we provide a brief overview of in silico tools for CRISPR design and assess the CRISPR datasets and statistical metrics used for evaluating model performance. We benchmark seven ML and DL-based CRISPR-Cas9 editing efficiency prediction tools across nine CRISPR datasets covering six cell types and three species. The DL models CRISPRon and DeepHF outperform the other models exhibiting greater accuracy and higher Spearman correlation coefficient across multiple datasets. We compile all CRISPR datasets and in silico prediction tools into a GuideNet resource web portal, aiming to facilitate and streamline the sharing of CRISPR datasets. Furthermore, we summarize features affecting CRISPR gene editing activity, providing important insights into model performance and the further development of more accurate CRISPR prediction models.

CRISPR-SpCas9 gRNA活性预测工具综述及比较分析
设计具有高效率和特异性的引导 RNA(gRNA)对于 CRISPR 基因编辑技术的成功应用至关重要。尽管已经开发出许多基于机器学习(ML)和深度学习(DL)的工具来预测 gRNA 的活性,但仍需要对其预测性能进行系统而无偏见的评估。在此,我们简要概述了用于 CRISPR 设计的硅学工具,并评估了用于评估模型性能的 CRISPR 数据集和统计指标。我们在涵盖六种细胞类型和三种物种的九个 CRISPR 数据集上对七种基于 ML 和 DL 的 CRISPR-Cas9 编辑效率预测工具进行了基准测试。在多个数据集上,DL 模型 CRISPRon 和 DeepHF 优于其他模型,表现出更高的准确性和更高的斯皮尔曼相关系数。我们将所有 CRISPR 数据集和硅学预测工具编入 GuideNet 资源门户网站,旨在促进和简化 CRISPR 数据集的共享。此外,我们还总结了影响CRISPR基因编辑活性的特征,为了解模型性能和进一步开发更准确的CRISPR预测模型提供了重要依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CRISPR Journal
CRISPR Journal Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍: In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR. Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信