Raul Garcia-Diez, Johannes Frisch, Marianne van der Merwe, Romualdus Enggar Wibowo, Mihaela Gorgoi, Elmar Kataev, Catalina E Jimenez, Mauricio D Arce, William Smith, Wilson Quevedo-Garzon, Regan G Wilks, Dirk Wallacher, Leonhard J Reinschlüssel, Gülen C Tok, Hubert A Gasteiger, Marcus Bär
{"title":"The OÆSE endstation at BESSY II: operando X-ray absorption spectroscopy for energy materials.","authors":"Raul Garcia-Diez, Johannes Frisch, Marianne van der Merwe, Romualdus Enggar Wibowo, Mihaela Gorgoi, Elmar Kataev, Catalina E Jimenez, Mauricio D Arce, William Smith, Wilson Quevedo-Garzon, Regan G Wilks, Dirk Wallacher, Leonhard J Reinschlüssel, Gülen C Tok, Hubert A Gasteiger, Marcus Bär","doi":"10.1107/S160057752500116X","DOIUrl":null,"url":null,"abstract":"<p><p>The investigation of a wide range of energy materials under relevant operation conditions, allowing for real-time investigations of the (electro)chemical mechanisms governing the performance of related applications, is enabled by the new Operando Absorption and Emission Spectroscopy at EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL) at the BESSY II synchrotron facility in Berlin, Germany. Currently primarily used for X-ray absorption spectroscopy (XAS) studies, the OÆSE endstation utilizes the undulator-based two-colour EMIL beamline (covering an energy range between 80 and 10000 eV) to enable soft, tender, and hard XAS. In this work, the setup, along with operando sample environments tailored to address specific questions, is described, emphasizing its modularity and adaptability, and detailing specific strategies to minimize undesired radiation-induced effects caused by the high brilliance of the EMIL beamline. The in situ growth of electrodeposited copper monitored by soft and hard XAS, at the Cu L<sub>3</sub> edge (sXAS) and Cu K edge (hXAS), respectively, is used as a proof-of-concept experiment, showcasing the capabilities of the OÆSE endstation as a versatile tool for comprehensive in situ/operando studies of energy materials under relevant conditions.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"634-648"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S160057752500116X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation of a wide range of energy materials under relevant operation conditions, allowing for real-time investigations of the (electro)chemical mechanisms governing the performance of related applications, is enabled by the new Operando Absorption and Emission Spectroscopy at EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL) at the BESSY II synchrotron facility in Berlin, Germany. Currently primarily used for X-ray absorption spectroscopy (XAS) studies, the OÆSE endstation utilizes the undulator-based two-colour EMIL beamline (covering an energy range between 80 and 10000 eV) to enable soft, tender, and hard XAS. In this work, the setup, along with operando sample environments tailored to address specific questions, is described, emphasizing its modularity and adaptability, and detailing specific strategies to minimize undesired radiation-induced effects caused by the high brilliance of the EMIL beamline. The in situ growth of electrodeposited copper monitored by soft and hard XAS, at the Cu L3 edge (sXAS) and Cu K edge (hXAS), respectively, is used as a proof-of-concept experiment, showcasing the capabilities of the OÆSE endstation as a versatile tool for comprehensive in situ/operando studies of energy materials under relevant conditions.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.