{"title":"RELAY: Robotic EyeLink AnalYsis of the EyeLink 1000 Using an Artificial Eye.","authors":"Anna-Maria Felßberg, Dominykas Strazdas","doi":"10.3390/vision9010018","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of ambient brightness surroundings on the peak velocities of visually guided saccades remains a topic of debate in the field of eye-tracking research. While some studies suggest that saccades in darkness are slower than in light, others question this finding, citing inconsistencies influenced by factors such as pupil deformation during saccades, gaze position, or the measurement technique itself. To investigate these, we developed RELAY (Robotic EyeLink AnalYsis), a low-cost, stepper motor-driven artificial eye capable of simulating human saccades with controlled pupil, gaze directions, and brightness. Using the EyeLink 1000, a widely employed eye tracker, we assessed accuracy and precision across three illumination settings. Our results confirm the reliability of the EyeLink 1000, demonstrating no artifacts in pupil-based eye tracking related to brightness variations. This suggests that previously observed changes in peak velocities with varying brightness are likely due to human factors, warranting further investigation. However, we observed systematic deviations in measured pupil size depending on gaze direction. These findings emphasize the importance of reporting illumination conditions and gaze parameters in eye-tracking experiments to ensure data consistency and comparability. Our novel artificial eye provides a robust and reproducible platform for evaluating eye tracking systems and deepening our understanding of the human visual system.</p>","PeriodicalId":36586,"journal":{"name":"Vision (Switzerland)","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946672/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vision9010018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of ambient brightness surroundings on the peak velocities of visually guided saccades remains a topic of debate in the field of eye-tracking research. While some studies suggest that saccades in darkness are slower than in light, others question this finding, citing inconsistencies influenced by factors such as pupil deformation during saccades, gaze position, or the measurement technique itself. To investigate these, we developed RELAY (Robotic EyeLink AnalYsis), a low-cost, stepper motor-driven artificial eye capable of simulating human saccades with controlled pupil, gaze directions, and brightness. Using the EyeLink 1000, a widely employed eye tracker, we assessed accuracy and precision across three illumination settings. Our results confirm the reliability of the EyeLink 1000, demonstrating no artifacts in pupil-based eye tracking related to brightness variations. This suggests that previously observed changes in peak velocities with varying brightness are likely due to human factors, warranting further investigation. However, we observed systematic deviations in measured pupil size depending on gaze direction. These findings emphasize the importance of reporting illumination conditions and gaze parameters in eye-tracking experiments to ensure data consistency and comparability. Our novel artificial eye provides a robust and reproducible platform for evaluating eye tracking systems and deepening our understanding of the human visual system.