{"title":"Optimized electroporation for efficient evaluation of genetic elements in Dichomitus squalens.","authors":"Jing Li, Jie Wu, Dongrui You, Yasuo Igarashi, Feng Luo, Peng Chang","doi":"10.1007/s11274-025-04320-y","DOIUrl":null,"url":null,"abstract":"<p><p>Dichomitus squalens, a promising white-rot basidiomycete for industrial enzyme production, necessitates efficient genetic manipulation systems to fully leverage its biotechnological potential. Although established methods such as protoplast-mediated and Agrobacterium tumefaciens-mediated transformations are effective in D. squalens, they are complex and time-consuming. This study introduces the electroporation transformation system for D. squalens, which is simpler and timesaving. By optimizing electroporation parameters, we obtained 77 ± 11 transformants per μg of DNA. Furthermore, we validated the suitability of the Nourseothricin N-acetyl transferase gene as a selectable marker and the NanoLuciferase gene as a bioluminescent reporter in D. squalens using our refined electroporation protocol. This study expands the toolkit for genetic engineering in D. squalens, offering greater flexibility for future molecular investigations. The development of this electroporation system not only enhances the ease of genetic manipulation in D. squalens but also provides a foundation for further exploration of its enzymatic capabilities and potential applications in biotechnology. The streamlined protocol allows for more efficient and rapid genetic engineering, facilitating the study of gene function and the development of improved strains for industrial purposes.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 4","pages":"107"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04320-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dichomitus squalens, a promising white-rot basidiomycete for industrial enzyme production, necessitates efficient genetic manipulation systems to fully leverage its biotechnological potential. Although established methods such as protoplast-mediated and Agrobacterium tumefaciens-mediated transformations are effective in D. squalens, they are complex and time-consuming. This study introduces the electroporation transformation system for D. squalens, which is simpler and timesaving. By optimizing electroporation parameters, we obtained 77 ± 11 transformants per μg of DNA. Furthermore, we validated the suitability of the Nourseothricin N-acetyl transferase gene as a selectable marker and the NanoLuciferase gene as a bioluminescent reporter in D. squalens using our refined electroporation protocol. This study expands the toolkit for genetic engineering in D. squalens, offering greater flexibility for future molecular investigations. The development of this electroporation system not only enhances the ease of genetic manipulation in D. squalens but also provides a foundation for further exploration of its enzymatic capabilities and potential applications in biotechnology. The streamlined protocol allows for more efficient and rapid genetic engineering, facilitating the study of gene function and the development of improved strains for industrial purposes.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.