Alleviation of mycobacterial infection by impairing motility and biofilm formation via natural and synthetic molecules.

IF 4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Abirami Karthikeyan, Nazia Tabassum, Geum-Jae Jeong, Aqib Javaid, Arun Kumar Mani, Tae-Hee Kim, Young-Mog Kim, Won-Kyo Jung, Fazlurrahman Khan
{"title":"Alleviation of mycobacterial infection by impairing motility and biofilm formation via natural and synthetic molecules.","authors":"Abirami Karthikeyan, Nazia Tabassum, Geum-Jae Jeong, Aqib Javaid, Arun Kumar Mani, Tae-Hee Kim, Young-Mog Kim, Won-Kyo Jung, Fazlurrahman Khan","doi":"10.1007/s11274-025-04322-w","DOIUrl":null,"url":null,"abstract":"<p><p>Mycobacterium species show distinctive characteristics with significant medical implications. Mycobacteria, including Mycobacterium tuberculosis and non-tuberculous mycobacteria, can form biofilms that facilitate their survival in hostile environments and contribute to development of antibiotic resistance and responses by the host immune system. Mycobacterial biofilm development is a complex process involving multiple genetic determinants, notably mmpL genes, which regulate lipid transport and support cell wall integrity, and the groEL gene, which is essential for biofilm maturation. Sliding motility, a passive form of surface movement observed across various mycobacterial species, is closely associated with biofilm formation and colony morphology. The unique sliding motility and biofilm-forming capabilities of Mycobacterium spp. are pivotal for their pathogenicity and persistence in diverse environments. A comprehensive understanding of the regulatory mechanisms governing these processes is crucial for the development of novel therapeutic strategies against mycobacterial infections. This review provides a detailed examination of our current knowledge regarding mycobacterial biofilm formation and motility, with a focus on regulation of these processes, their impact on pathogenicity, and potential avenues for therapeutic intervention. To this end, the potential of natural and synthetic compounds, including nanomaterials, in combating mycobacterial biofilms and inhibiting sliding motility are discussed as well. These compounds offer new avenues for the treatment of drug-resistant mycobacterial infections.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 4","pages":"113"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04322-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycobacterium species show distinctive characteristics with significant medical implications. Mycobacteria, including Mycobacterium tuberculosis and non-tuberculous mycobacteria, can form biofilms that facilitate their survival in hostile environments and contribute to development of antibiotic resistance and responses by the host immune system. Mycobacterial biofilm development is a complex process involving multiple genetic determinants, notably mmpL genes, which regulate lipid transport and support cell wall integrity, and the groEL gene, which is essential for biofilm maturation. Sliding motility, a passive form of surface movement observed across various mycobacterial species, is closely associated with biofilm formation and colony morphology. The unique sliding motility and biofilm-forming capabilities of Mycobacterium spp. are pivotal for their pathogenicity and persistence in diverse environments. A comprehensive understanding of the regulatory mechanisms governing these processes is crucial for the development of novel therapeutic strategies against mycobacterial infections. This review provides a detailed examination of our current knowledge regarding mycobacterial biofilm formation and motility, with a focus on regulation of these processes, their impact on pathogenicity, and potential avenues for therapeutic intervention. To this end, the potential of natural and synthetic compounds, including nanomaterials, in combating mycobacterial biofilms and inhibiting sliding motility are discussed as well. These compounds offer new avenues for the treatment of drug-resistant mycobacterial infections.

求助全文
约1分钟内获得全文 求助全文
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信