{"title":"Advances in the biological production of sugar alcohols from biomass-derived xylose.","authors":"Yue Tang, Xin Ju, Xiaobao Chen, Liangzhi Li","doi":"10.1007/s11274-025-04316-8","DOIUrl":null,"url":null,"abstract":"<p><p>Sugar alcohols are a common class of low-calorie sweeteners. The advancement of technologies utilizing renewable resources has heightened interest in synthesizing sugar alcohols from biomass-derived xylose for cost down of process and sustainability. This review focuses on the potential of biomass-derived xylose and its effective conversion into sugar alcohols, underscoring the significance of this process in sustainable industrial applications. The two main approaches for producing sugar alcohols which include enzyme catalysis and microbial fermentation are thoroughly discussed. The microbial fermentation pathway relies on genetically engineered strains, which are modified to efficiently convert xylose into target sugar alcohols. Enzyme catalysis, on the other hand, directly converts xylose to sugar alcohols through specific reactions. In addition, strategies to improve product selectivity and reduce by-products are discussed in the paper, which are crucial for improving the economic viability and environmental sustainability of sugar alcohol production. Overall, utilizing xylose from biomass to produce sugar alcohols manifests environmental and economic benefits, indicating its substantial potential in the shift towards a low-carbon economy. Future studies may further explore cutting edge technologies to maximize the utilization of biomass-derived xylose and the sustainable production of sugar alcohols.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 4","pages":"110"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04316-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sugar alcohols are a common class of low-calorie sweeteners. The advancement of technologies utilizing renewable resources has heightened interest in synthesizing sugar alcohols from biomass-derived xylose for cost down of process and sustainability. This review focuses on the potential of biomass-derived xylose and its effective conversion into sugar alcohols, underscoring the significance of this process in sustainable industrial applications. The two main approaches for producing sugar alcohols which include enzyme catalysis and microbial fermentation are thoroughly discussed. The microbial fermentation pathway relies on genetically engineered strains, which are modified to efficiently convert xylose into target sugar alcohols. Enzyme catalysis, on the other hand, directly converts xylose to sugar alcohols through specific reactions. In addition, strategies to improve product selectivity and reduce by-products are discussed in the paper, which are crucial for improving the economic viability and environmental sustainability of sugar alcohol production. Overall, utilizing xylose from biomass to produce sugar alcohols manifests environmental and economic benefits, indicating its substantial potential in the shift towards a low-carbon economy. Future studies may further explore cutting edge technologies to maximize the utilization of biomass-derived xylose and the sustainable production of sugar alcohols.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.