Resilience and robustness: from sub-organismal responses to communities.

IF 16.7 1区 生物学 Q1 ECOLOGY
Maren N Vitousek, Conor C Taff, Jessie L Williamson
{"title":"Resilience and robustness: from sub-organismal responses to communities.","authors":"Maren N Vitousek, Conor C Taff, Jessie L Williamson","doi":"10.1016/j.tree.2025.03.001","DOIUrl":null,"url":null,"abstract":"<p><p>Coping with challenges is essential to life on earth. Determining the processes that generate resilience and robustness to disturbance across levels of biological organization is increasingly important as the pace of global change accelerates; however, to date, multiscale models have primarily focused on population to ecosystem scales. In this opinion article we combine conceptual models from different fields to develop a unified a framework of resilience and robustness that explicitly links sub-organismal responses with higher-level outcomes. This framework predicts that interactions among sub-organismal response components - including their temporal dynamics and the plasticity of homeostatic regulatory networks - are key drivers of current and future resilience.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":""},"PeriodicalIF":16.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tree.2025.03.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coping with challenges is essential to life on earth. Determining the processes that generate resilience and robustness to disturbance across levels of biological organization is increasingly important as the pace of global change accelerates; however, to date, multiscale models have primarily focused on population to ecosystem scales. In this opinion article we combine conceptual models from different fields to develop a unified a framework of resilience and robustness that explicitly links sub-organismal responses with higher-level outcomes. This framework predicts that interactions among sub-organismal response components - including their temporal dynamics and the plasticity of homeostatic regulatory networks - are key drivers of current and future resilience.

应对挑战对地球上的生命至关重要。随着全球变化步伐的加快,确定各层次生物组织对干扰产生恢复力和稳健性的过程变得越来越重要;然而,迄今为止,多尺度模型主要侧重于种群到生态系统尺度。在这篇观点文章中,我们结合了不同领域的概念模型,建立了一个统一的复原力和稳健性框架,明确地将亚生物体的反应与更高层次的结果联系起来。该框架预测,亚有机体反应成分之间的相互作用--包括它们的时间动态和同态调节网络的可塑性--是当前和未来复原力的关键驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in ecology & evolution
Trends in ecology & evolution 生物-进化生物学
CiteScore
26.50
自引率
3.00%
发文量
178
审稿时长
6-12 weeks
期刊介绍: Trends in Ecology & Evolution (TREE) is a comprehensive journal featuring polished, concise, and readable reviews, opinions, and letters in all areas of ecology and evolutionary science. Catering to researchers, lecturers, teachers, field workers, and students, it serves as a valuable source of information. The journal keeps scientists informed about new developments and ideas across the spectrum of ecology and evolutionary biology, spanning from pure to applied and molecular to global perspectives. In the face of global environmental change, Trends in Ecology & Evolution plays a crucial role in covering all significant issues concerning organisms and their environments, making it a major forum for life scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信