Verónica Ávila Vázquez, Miguel Mauricio Aguilera Flores, Agali Naivy Veyna Robles, Lilia Elizabeth Solís Lerma, Omar Sánchez Mata, Sergio Miguel Durón Torres
{"title":"Determination of Lead in Fruit Grown in the Vicinity of Tailings Dams of a Mine in Zacatecas, Mexico.","authors":"Verónica Ávila Vázquez, Miguel Mauricio Aguilera Flores, Agali Naivy Veyna Robles, Lilia Elizabeth Solís Lerma, Omar Sánchez Mata, Sergio Miguel Durón Torres","doi":"10.3390/toxics13030188","DOIUrl":null,"url":null,"abstract":"<p><p>This study analyzed the lead concentrations in fruit grown near tailings dams of a mine in Zacatecas (Mexico) using electrochemical techniques. A 3 × 4 factorial design, with three levels of apple tree distance (low, medium, and high) and four levels of apple tree part (stem, leaf, pulp, and peel), was performed to predict the pathway for contamination (foliar or radicular). Samples of each apple tree part, soil, and irrigation water were collected. The lead concentrations were determined by anodic stripping voltammetry. The results showed lead concentrations of 172 ppm and 0.012 ppm for the soil and irrigation water, which were discarded as sources of contamination since they were below the allowable limits by the Mexican standards (400 ppm and 2 ppm, respectively). However, lead concentrations in the stem and leaf ranged from 6.6 ppm to 30.7 ppm, and pulp and peel exceeded 300 times the allowable limit by the <i>Codex Alimentarius</i> (0.1 ppm). The apple tree part was a significant factor in the experimental design. Hence, it was predicted that the pathway for contamination is by foliar absorption. The fruit is highly contaminated by its proximity to the mine. Therefore, mitigation actions must be performed to avoid health risks for the consumers of this fruit.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13030188","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study analyzed the lead concentrations in fruit grown near tailings dams of a mine in Zacatecas (Mexico) using electrochemical techniques. A 3 × 4 factorial design, with three levels of apple tree distance (low, medium, and high) and four levels of apple tree part (stem, leaf, pulp, and peel), was performed to predict the pathway for contamination (foliar or radicular). Samples of each apple tree part, soil, and irrigation water were collected. The lead concentrations were determined by anodic stripping voltammetry. The results showed lead concentrations of 172 ppm and 0.012 ppm for the soil and irrigation water, which were discarded as sources of contamination since they were below the allowable limits by the Mexican standards (400 ppm and 2 ppm, respectively). However, lead concentrations in the stem and leaf ranged from 6.6 ppm to 30.7 ppm, and pulp and peel exceeded 300 times the allowable limit by the Codex Alimentarius (0.1 ppm). The apple tree part was a significant factor in the experimental design. Hence, it was predicted that the pathway for contamination is by foliar absorption. The fruit is highly contaminated by its proximity to the mine. Therefore, mitigation actions must be performed to avoid health risks for the consumers of this fruit.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.