Can Botulinum Toxin Type E Serve as a Novel Therapeutic Target for Managing Chronic Orofacial Pain?

IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY
Toxins Pub Date : 2025-03-10 DOI:10.3390/toxins17030130
Sung-Koog Jung, Yu-Mi Kim, Min-Jeong Jo, Jo-Young Son, Jin-Sook Ju, Min-Kyoung Park, Min-Kyung Lee, Jae-Young Kim, Jeong-Sun Nam, Dong-Kuk Ahn
{"title":"Can Botulinum Toxin Type E Serve as a Novel Therapeutic Target for Managing Chronic Orofacial Pain?","authors":"Sung-Koog Jung, Yu-Mi Kim, Min-Jeong Jo, Jo-Young Son, Jin-Sook Ju, Min-Kyoung Park, Min-Kyung Lee, Jae-Young Kim, Jeong-Sun Nam, Dong-Kuk Ahn","doi":"10.3390/toxins17030130","DOIUrl":null,"url":null,"abstract":"<p><p>The existing literature offers limited experimental evidence on the role of botulinum neurotoxin type E (BoNT-E) in pain transmission. The present study investigated the antinociceptive effects of subcutaneously administered BoNT-E in chronic orofacial pain conditions. This study used orofacial formalin-induced pronociceptive behavior and complete Freund's adjuvant (CFA)-induced thermal hyperalgesia as inflammatory pain models in male Sprague Dawley rats. A neuropathic pain model was also developed by causing an injury to the inferior alveolar nerve. Subcutaneously administered BoNT-E (6, 10 units/kg) significantly reduced nociceptive behavior during the second phase of the formalin test compared to that of the vehicle treatment. These doses similarly alleviated thermal hypersensitivity in the CFA-treated rats. Moreover, BoNT-E (6, 10 units/kg) markedly attenuated mechanical allodynia in rats with an inferior alveolar nerve injury. At a dose of 10 units/kg, BoNT-E produced antinociceptive effects that became evident 8 h post-injection and persisted for 48 h. Notably, BoNT-E (10 units/kg) significantly reduced the number of <i>c-fos</i>-immunostained neurons in the trigeminal subnucleus caudalis of rats with an inferior alveolar nerve injury. In comparison, intraperitoneally administered gabapentin (30, 100 mg/kg) demonstrated significant mechanical anti-allodynic effects but exhibited lower analgesic efficacy than that of BoNT-E. These findings highlight the potential of BoNT-E as a therapeutic agent for chronic pain management.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945774/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17030130","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The existing literature offers limited experimental evidence on the role of botulinum neurotoxin type E (BoNT-E) in pain transmission. The present study investigated the antinociceptive effects of subcutaneously administered BoNT-E in chronic orofacial pain conditions. This study used orofacial formalin-induced pronociceptive behavior and complete Freund's adjuvant (CFA)-induced thermal hyperalgesia as inflammatory pain models in male Sprague Dawley rats. A neuropathic pain model was also developed by causing an injury to the inferior alveolar nerve. Subcutaneously administered BoNT-E (6, 10 units/kg) significantly reduced nociceptive behavior during the second phase of the formalin test compared to that of the vehicle treatment. These doses similarly alleviated thermal hypersensitivity in the CFA-treated rats. Moreover, BoNT-E (6, 10 units/kg) markedly attenuated mechanical allodynia in rats with an inferior alveolar nerve injury. At a dose of 10 units/kg, BoNT-E produced antinociceptive effects that became evident 8 h post-injection and persisted for 48 h. Notably, BoNT-E (10 units/kg) significantly reduced the number of c-fos-immunostained neurons in the trigeminal subnucleus caudalis of rats with an inferior alveolar nerve injury. In comparison, intraperitoneally administered gabapentin (30, 100 mg/kg) demonstrated significant mechanical anti-allodynic effects but exhibited lower analgesic efficacy than that of BoNT-E. These findings highlight the potential of BoNT-E as a therapeutic agent for chronic pain management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxins
Toxins TOXICOLOGY-
CiteScore
7.50
自引率
16.70%
发文量
765
审稿时长
16.24 days
期刊介绍: Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信