Bio-Refinery of Organics into Value-Added Biopolymers: Exploring the Effects of Hydraulic Retention Time and Organic Loading Rate on Biopolymer Harvesting from a Biofilm-Based Process.
Qingna Shang, Lin Li, Yi Zhang, Xueqing Shi, Harsha Ratnaweera, Dong-Hoon Kim, Haifeng Zhang
{"title":"Bio-Refinery of Organics into Value-Added Biopolymers: Exploring the Effects of Hydraulic Retention Time and Organic Loading Rate on Biopolymer Harvesting from a Biofilm-Based Process.","authors":"Qingna Shang, Lin Li, Yi Zhang, Xueqing Shi, Harsha Ratnaweera, Dong-Hoon Kim, Haifeng Zhang","doi":"10.3390/toxics13030183","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to examine the impacts of hydraulic retention time (HRT) and organic loading rate (OLR) on the alginate-like exopolymers' (ALEs) recovery potential from a biofilm-based process. A lab-scale moving bed biofilm reactor (MBBR) was operated under different HRT (12.0, 6.0, and 2.0 h) and OLR (1.0, 2.0, and 6.0 kg COD/m<sup>3</sup>/d) conditions. The results demonstrated that the reduction in HRT and increase in OLR had remarkable effects on enhancing ALE production and improving its properties, which resulted in the ALE yield increasing from 177.8 to 221.5 mg/g VSS, with the protein content rising from 399.3 to 494.3 mg/g ALE and the enhanced alginate purity by 39.8%, corresponding to the TOC concentration increasing from 108.3 to 157.0 mg/g ALE. Meanwhile, to illustrate different ALE recovery potentials, microbial community compositions of the MBBR at various operational conditions were also assessed. The results showed that a higher relative abundance of EPS producers (29.86%) was observed in the MBBR with an HRT of 2.0 h than that of 12.0 h and 6.0 h, revealing its higher ALE recovery potential. This study yields crucial results in terms of resource recovery for wastewater reclamation by providing an effective approach to directionally cultivating ALEs.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945702/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13030183","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to examine the impacts of hydraulic retention time (HRT) and organic loading rate (OLR) on the alginate-like exopolymers' (ALEs) recovery potential from a biofilm-based process. A lab-scale moving bed biofilm reactor (MBBR) was operated under different HRT (12.0, 6.0, and 2.0 h) and OLR (1.0, 2.0, and 6.0 kg COD/m3/d) conditions. The results demonstrated that the reduction in HRT and increase in OLR had remarkable effects on enhancing ALE production and improving its properties, which resulted in the ALE yield increasing from 177.8 to 221.5 mg/g VSS, with the protein content rising from 399.3 to 494.3 mg/g ALE and the enhanced alginate purity by 39.8%, corresponding to the TOC concentration increasing from 108.3 to 157.0 mg/g ALE. Meanwhile, to illustrate different ALE recovery potentials, microbial community compositions of the MBBR at various operational conditions were also assessed. The results showed that a higher relative abundance of EPS producers (29.86%) was observed in the MBBR with an HRT of 2.0 h than that of 12.0 h and 6.0 h, revealing its higher ALE recovery potential. This study yields crucial results in terms of resource recovery for wastewater reclamation by providing an effective approach to directionally cultivating ALEs.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.