Structurally Similar Mycotoxins Aflatoxin B1 and Sterigmatocystin Trigger Different and Distinctive High-Resolution Mutational Spectra in Mammalian Cells.
Pennapa Thongararm, Marisa Chancharoen, Nutchapong Suwanwong, Somsak Ruchirawat, Mathuros Ruchirawat, Bogdan I Fedeles, Robert G Croy, John M Essigmann
{"title":"Structurally Similar Mycotoxins Aflatoxin B<sub>1</sub> and Sterigmatocystin Trigger Different and Distinctive High-Resolution Mutational Spectra in Mammalian Cells.","authors":"Pennapa Thongararm, Marisa Chancharoen, Nutchapong Suwanwong, Somsak Ruchirawat, Mathuros Ruchirawat, Bogdan I Fedeles, Robert G Croy, John M Essigmann","doi":"10.3390/toxins17030112","DOIUrl":null,"url":null,"abstract":"<p><p>Aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) and sterigmatocystin (ST) are mycotoxins that pose significant threats to human and animal health owing to their mutagenic, carcinogenic, and toxic properties. They are structurally similar and widely believed to exert their biological effects via the generation of DNA-damaging epoxides at their respective terminal furan rings. Despite structural identity in the warhead portion of each toxin, this work shows that distal parts of each molecule are responsible for the distinctive mutational fingerprints seen in <i>gpt</i>Δ C57BL/6J mouse embryo fibroblasts (MEFs). The two toxins differ structurally in the puckered cyclopentenone ring of AFB<sub>1</sub> and in the planar xanthone functionality of ST. While both toxins mainly induce GC→TA mutations, the aforementioned differences in structure apparently trigger unique patterns of mutations, as revealed by high-resolution duplex sequencing of MEF genomes. AFB<sub>1</sub> is more mutagenic than ST and displays its transversion mutations in a pattern with primary and secondary hotspots (underscored) in 5'-CGC-3' and 5'-CGG-3' contexts, respectively. ST displays a modest 5'-CGG-3' hotspot while its other GC→TA transversions are more uniformly distributed in a pattern resembling established oxidative stress mutational spectra. This research delineates the mutational spectra of AFB<sub>1</sub> and ST, establishing these patterns as possible early-onset biomarkers of exposure.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945433/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17030112","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aflatoxin B1 (AFB1) and sterigmatocystin (ST) are mycotoxins that pose significant threats to human and animal health owing to their mutagenic, carcinogenic, and toxic properties. They are structurally similar and widely believed to exert their biological effects via the generation of DNA-damaging epoxides at their respective terminal furan rings. Despite structural identity in the warhead portion of each toxin, this work shows that distal parts of each molecule are responsible for the distinctive mutational fingerprints seen in gptΔ C57BL/6J mouse embryo fibroblasts (MEFs). The two toxins differ structurally in the puckered cyclopentenone ring of AFB1 and in the planar xanthone functionality of ST. While both toxins mainly induce GC→TA mutations, the aforementioned differences in structure apparently trigger unique patterns of mutations, as revealed by high-resolution duplex sequencing of MEF genomes. AFB1 is more mutagenic than ST and displays its transversion mutations in a pattern with primary and secondary hotspots (underscored) in 5'-CGC-3' and 5'-CGG-3' contexts, respectively. ST displays a modest 5'-CGG-3' hotspot while its other GC→TA transversions are more uniformly distributed in a pattern resembling established oxidative stress mutational spectra. This research delineates the mutational spectra of AFB1 and ST, establishing these patterns as possible early-onset biomarkers of exposure.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.