TGFBR3 dependent mechanism of TGFB2 in smooth muscle cell differentiation and implications for TGFB2-related aortic aneurysm.

IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING
Ying Tang, Jiaxi Cheng, Cynthia Huang, Ping Qiu, Jingxin Li, Yuqing Eugene Chen, Dogukan Mizrak, Bo Yang
{"title":"TGFBR3 dependent mechanism of TGFB2 in smooth muscle cell differentiation and implications for TGFB2-related aortic aneurysm.","authors":"Ying Tang, Jiaxi Cheng, Cynthia Huang, Ping Qiu, Jingxin Li, Yuqing Eugene Chen, Dogukan Mizrak, Bo Yang","doi":"10.1093/stcltm/szae101","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Pathogenic variants in canonical transforming growth factor β (TGFβ) signaling genes predispose patients to thoracic aortic aneurysm and dissection (TAAD), predominantly in aortic root. Although TAAD pathogenesis associated with TGFβ receptor defects is well characterized, distinct and redundant mechanisms of TGFβ isoforms in TAAD incidence and severity remain elusive.</p><p><strong>Objective: </strong>Here we examined the biological role of TGFB2 in smooth muscle cell (SMC) differentiation and investigated how TGFB2 defects can lead to regional TAAD manifestations.</p><p><strong>Methods: </strong>To characterize the role of TGFB2 in SMC differentiation and function, we employed human-induced pluripotent stem cell (hiPSC)-derived SMC differentiation, CRISPR/Cas9 gene editing, three-dimensional SMC constructs, and human aortic tissue samples.</p><p><strong>Results: </strong>Despite the similar effects of different TGFβ isoforms on hiPSC-derived SMC differentiation, siRNA experiments revealed that TGFB2 distinctively displays TGFBR3 dependence for signal transduction, an understudied TGFβ receptor in TAAD. Molecular evaluation of different thoracic aorta regions suggested TGFB2 and TGFBR3 enrichment in the aortic root tunica media. TGFB2 haploinsufficiency (TGFB2KO/+) and TGFB2 neutralization impaired the differentiation of second heart field-derived SMCs. TGFBR3KO/KO prevented the molecular rescue of TGFB2KO/+ by TGFB2 supplementation indicating the involvement of TGFBR3 in TGFB2-mediated SMC differentiation. Lastly, a missense TGFB2 variant (TGFB2G276R/+) caused mechanical defects in SMC tissue ring constructs that were rescued by TGFB2 supplementation or genetic correction.</p><p><strong>Conclusion: </strong>Our data suggests the distinct regulation and action of TGFB2 in SMCs populating the aortic root, while redundant activities of TGFβ isoforms provide implications about the milder TAAD aggressiveness of pathogenic TGFB2 variants.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae101","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Pathogenic variants in canonical transforming growth factor β (TGFβ) signaling genes predispose patients to thoracic aortic aneurysm and dissection (TAAD), predominantly in aortic root. Although TAAD pathogenesis associated with TGFβ receptor defects is well characterized, distinct and redundant mechanisms of TGFβ isoforms in TAAD incidence and severity remain elusive.

Objective: Here we examined the biological role of TGFB2 in smooth muscle cell (SMC) differentiation and investigated how TGFB2 defects can lead to regional TAAD manifestations.

Methods: To characterize the role of TGFB2 in SMC differentiation and function, we employed human-induced pluripotent stem cell (hiPSC)-derived SMC differentiation, CRISPR/Cas9 gene editing, three-dimensional SMC constructs, and human aortic tissue samples.

Results: Despite the similar effects of different TGFβ isoforms on hiPSC-derived SMC differentiation, siRNA experiments revealed that TGFB2 distinctively displays TGFBR3 dependence for signal transduction, an understudied TGFβ receptor in TAAD. Molecular evaluation of different thoracic aorta regions suggested TGFB2 and TGFBR3 enrichment in the aortic root tunica media. TGFB2 haploinsufficiency (TGFB2KO/+) and TGFB2 neutralization impaired the differentiation of second heart field-derived SMCs. TGFBR3KO/KO prevented the molecular rescue of TGFB2KO/+ by TGFB2 supplementation indicating the involvement of TGFBR3 in TGFB2-mediated SMC differentiation. Lastly, a missense TGFB2 variant (TGFB2G276R/+) caused mechanical defects in SMC tissue ring constructs that were rescued by TGFB2 supplementation or genetic correction.

Conclusion: Our data suggests the distinct regulation and action of TGFB2 in SMCs populating the aortic root, while redundant activities of TGFβ isoforms provide implications about the milder TAAD aggressiveness of pathogenic TGFB2 variants.

TGFBR3依赖性TGFB2在平滑肌细胞分化中的作用机制及其对TGFB2相关动脉瘤的影响
典型转化生长因子β (TGFβ)信号基因的致病变异使患者易患胸主动脉瘤和夹层(TAAD),主要发生在主动脉根部。虽然TAAD的发病机制与TGFβ受体缺陷相关,但TGFβ亚型在TAAD发病率和严重程度中的不同和冗余机制仍然难以捉摸。目的:研究TGFB2在平滑肌细胞(SMC)分化中的生物学作用,并探讨TGFB2缺陷如何导致局部TAAD表现。方法:为了表征TGFB2在SMC分化和功能中的作用,我们采用了人诱导多能干细胞(human induced pluripotent stem cell, hiPSC)衍生的SMC分化、CRISPR/Cas9基因编辑、三维SMC构建和人主动脉组织样本。结果:尽管不同的TGFβ亚型对hipsc来源的SMC分化有相似的影响,但siRNA实验显示TGFB2在信号转导方面明显依赖于TGFBR3,这是TAAD中尚未得到充分研究的TGFβ受体。对不同胸主动脉区域TGFB2和TGFBR3的分子评价表明,TGFB2和TGFBR3在主动脉根部中膜富集。TGFB2单倍性不足(TGFB2KO/+)和TGFB2中和会损害第二心野源性SMCs的分化。TGFBR3KO/KO通过补充TGFB2阻止了TGFB2KO/+的分子拯救,这表明TGFBR3参与了TGFB2介导的SMC分化。最后,TGFB2错义变体(TGFB2G276R/+)导致SMC组织环结构的机械缺陷,这些缺陷可以通过补充TGFB2或基因校正来修复。结论:我们的数据表明TGFB2在主动脉根部生长的SMCs中具有独特的调控和作用,而TGFβ亚型的冗余活性可能说明致病性TGFB2变体具有较轻的TAAD侵袭性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cells Translational Medicine
Stem Cells Translational Medicine CELL & TISSUE ENGINEERING-
CiteScore
12.90
自引率
3.30%
发文量
140
审稿时长
6-12 weeks
期刊介绍: STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal. STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes. The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信