TGFBR3 dependent mechanism of TGFB2 in smooth muscle cell differentiation and implications for TGFB2-related aortic aneurysm.

IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING
Ying Tang, Jiaxi Cheng, Cynthia Huang, Ping Qiu, Jingxin Li, Yuqing Eugene Chen, Dogukan Mizrak, Bo Yang
{"title":"TGFBR3 dependent mechanism of TGFB2 in smooth muscle cell differentiation and implications for TGFB2-related aortic aneurysm.","authors":"Ying Tang, Jiaxi Cheng, Cynthia Huang, Ping Qiu, Jingxin Li, Yuqing Eugene Chen, Dogukan Mizrak, Bo Yang","doi":"10.1093/stcltm/szae101","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Pathogenic variants in canonical transforming growth factor β (TGFβ) signaling genes predispose patients to thoracic aortic aneurysm and dissection (TAAD), predominantly in aortic root. Although TAAD pathogenesis associated with TGFβ receptor defects is well characterized, distinct and redundant mechanisms of TGFβ isoforms in TAAD incidence and severity remain elusive.</p><p><strong>Objective: </strong>Here we examined the biological role of TGFB2 in smooth muscle cell (SMC) differentiation and investigated how TGFB2 defects can lead to regional TAAD manifestations.</p><p><strong>Methods: </strong>To characterize the role of TGFB2 in SMC differentiation and function, we employed human-induced pluripotent stem cell (hiPSC)-derived SMC differentiation, CRISPR/Cas9 gene editing, three-dimensional SMC constructs, and human aortic tissue samples.</p><p><strong>Results: </strong>Despite the similar effects of different TGFβ isoforms on hiPSC-derived SMC differentiation, siRNA experiments revealed that TGFB2 distinctively displays TGFBR3 dependence for signal transduction, an understudied TGFβ receptor in TAAD. Molecular evaluation of different thoracic aorta regions suggested TGFB2 and TGFBR3 enrichment in the aortic root tunica media. TGFB2 haploinsufficiency (TGFB2KO/+) and TGFB2 neutralization impaired the differentiation of second heart field-derived SMCs. TGFBR3KO/KO prevented the molecular rescue of TGFB2KO/+ by TGFB2 supplementation indicating the involvement of TGFBR3 in TGFB2-mediated SMC differentiation. Lastly, a missense TGFB2 variant (TGFB2G276R/+) caused mechanical defects in SMC tissue ring constructs that were rescued by TGFB2 supplementation or genetic correction.</p><p><strong>Conclusion: </strong>Our data suggests the distinct regulation and action of TGFB2 in SMCs populating the aortic root, while redundant activities of TGFβ isoforms provide implications about the milder TAAD aggressiveness of pathogenic TGFB2 variants.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae101","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Pathogenic variants in canonical transforming growth factor β (TGFβ) signaling genes predispose patients to thoracic aortic aneurysm and dissection (TAAD), predominantly in aortic root. Although TAAD pathogenesis associated with TGFβ receptor defects is well characterized, distinct and redundant mechanisms of TGFβ isoforms in TAAD incidence and severity remain elusive.

Objective: Here we examined the biological role of TGFB2 in smooth muscle cell (SMC) differentiation and investigated how TGFB2 defects can lead to regional TAAD manifestations.

Methods: To characterize the role of TGFB2 in SMC differentiation and function, we employed human-induced pluripotent stem cell (hiPSC)-derived SMC differentiation, CRISPR/Cas9 gene editing, three-dimensional SMC constructs, and human aortic tissue samples.

Results: Despite the similar effects of different TGFβ isoforms on hiPSC-derived SMC differentiation, siRNA experiments revealed that TGFB2 distinctively displays TGFBR3 dependence for signal transduction, an understudied TGFβ receptor in TAAD. Molecular evaluation of different thoracic aorta regions suggested TGFB2 and TGFBR3 enrichment in the aortic root tunica media. TGFB2 haploinsufficiency (TGFB2KO/+) and TGFB2 neutralization impaired the differentiation of second heart field-derived SMCs. TGFBR3KO/KO prevented the molecular rescue of TGFB2KO/+ by TGFB2 supplementation indicating the involvement of TGFBR3 in TGFB2-mediated SMC differentiation. Lastly, a missense TGFB2 variant (TGFB2G276R/+) caused mechanical defects in SMC tissue ring constructs that were rescued by TGFB2 supplementation or genetic correction.

Conclusion: Our data suggests the distinct regulation and action of TGFB2 in SMCs populating the aortic root, while redundant activities of TGFβ isoforms provide implications about the milder TAAD aggressiveness of pathogenic TGFB2 variants.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cells Translational Medicine
Stem Cells Translational Medicine CELL & TISSUE ENGINEERING-
CiteScore
12.90
自引率
3.30%
发文量
140
审稿时长
6-12 weeks
期刊介绍: STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal. STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes. The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信