Early stage of metabolic dysfunction associated steatotic liver disease disrupts circadian rhythm and induces neuroinflammation in rats.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Paul-Henri Graindorge, Justine Paoli, Berivan Yildirim, Chloe Morel, Ameziane Herzine, Maud Collin, Isabelle Gallais, Stephane Boucard, Benoît Pouyatos, David Meyre, Dominique Lagadic-Gossmann, Odile Sergent, Henri Schroeder, Nathalie Grova
{"title":"Early stage of metabolic dysfunction associated steatotic liver disease disrupts circadian rhythm and induces neuroinflammation in rats.","authors":"Paul-Henri Graindorge, Justine Paoli, Berivan Yildirim, Chloe Morel, Ameziane Herzine, Maud Collin, Isabelle Gallais, Stephane Boucard, Benoît Pouyatos, David Meyre, Dominique Lagadic-Gossmann, Odile Sergent, Henri Schroeder, Nathalie Grova","doi":"10.1038/s41598-025-94234-4","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is a chronic liver disease affecting 25% of the European population, with rising global incidence. Liver damage includes ballooning, steatosis, inflammation and fibrosis. Associated brain disorders include sleep, cognitive issues, anxiety, and depression. While neurological complications in advanced MASLD are well documented, early cerebral manifestations remain largely unexplored. This study aimed at developing an MASLD rat model to assess the onset of early brain damage, focusing on impairments of the circadian cycle rhythm and associated neuroinflammation. Sprague Dawley rats were divided into two groups: one received a high-fat, high-cholesterol (HFHC) diet for 90 days, while the other received a standard diet. Histological analysis showed significant hepatic steatosis, ballooning, and inflammation in the HFHC group (p < 0.01). These lesions correlated with elevated hepatic triglycerides (p < 0.01), increased Alanine Aminotransferase, Aspartate Aminotransferase, total cholesterol, and low-density lipoprotein, alongside decreased plasma high-density lipoprotein. Behavioural analysis using activity wheels revealed that the HFHC rats steadily maintained their activity level during the rest periods when compared with controls (p < 0.05). This behavioural alteration occurred alongside neuroinflammation, demonstrated by changes in the expression of 36 and 17 inflammatory mediators in the cerebellum and frontal cortex respectively. These changes were associated with an increase in the expression of glial cell markers (Aif1 and Gfap genes) and an increase in the number of microglial cells, affecting the frontal cortex and cerebellum differently. This rat model of early MASLD shows circadian rhythm disturbances, which could reflect sleep disorders in humans. These early brain disturbances specific to MASLD, which occur before the symptoms of liver disease become clinically apparent, could therefore be used as an early diagnosis marker for MASLD patients.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"10616"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-94234-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is a chronic liver disease affecting 25% of the European population, with rising global incidence. Liver damage includes ballooning, steatosis, inflammation and fibrosis. Associated brain disorders include sleep, cognitive issues, anxiety, and depression. While neurological complications in advanced MASLD are well documented, early cerebral manifestations remain largely unexplored. This study aimed at developing an MASLD rat model to assess the onset of early brain damage, focusing on impairments of the circadian cycle rhythm and associated neuroinflammation. Sprague Dawley rats were divided into two groups: one received a high-fat, high-cholesterol (HFHC) diet for 90 days, while the other received a standard diet. Histological analysis showed significant hepatic steatosis, ballooning, and inflammation in the HFHC group (p < 0.01). These lesions correlated with elevated hepatic triglycerides (p < 0.01), increased Alanine Aminotransferase, Aspartate Aminotransferase, total cholesterol, and low-density lipoprotein, alongside decreased plasma high-density lipoprotein. Behavioural analysis using activity wheels revealed that the HFHC rats steadily maintained their activity level during the rest periods when compared with controls (p < 0.05). This behavioural alteration occurred alongside neuroinflammation, demonstrated by changes in the expression of 36 and 17 inflammatory mediators in the cerebellum and frontal cortex respectively. These changes were associated with an increase in the expression of glial cell markers (Aif1 and Gfap genes) and an increase in the number of microglial cells, affecting the frontal cortex and cerebellum differently. This rat model of early MASLD shows circadian rhythm disturbances, which could reflect sleep disorders in humans. These early brain disturbances specific to MASLD, which occur before the symptoms of liver disease become clinically apparent, could therefore be used as an early diagnosis marker for MASLD patients.

早期代谢功能障碍相关的脂肪变性肝病破坏了大鼠的昼夜节律并诱发了神经炎症。
代谢功能障碍相关脂肪变性肝病(MASLD)是一种慢性肝病,影响25%的欧洲人口,全球发病率不断上升。肝损害包括气球样变、脂肪变性、炎症和纤维化。相关的脑部疾病包括睡眠、认知问题、焦虑和抑郁。虽然晚期MASLD的神经系统并发症有很好的文献记载,但早期的大脑表现在很大程度上仍未被发现。本研究旨在建立一个MASLD大鼠模型来评估早期脑损伤的发生,重点关注昼夜节律的损伤和相关的神经炎症。斯普拉格·道利大鼠被分为两组:一组喂食高脂肪、高胆固醇(HFHC)食物90天,另一组喂食标准食物。组织学分析显示HFHC组显著的肝脂肪变性、肝水肿和炎症(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信