Hojjat Ghahramanzadeh Asl, Selcen Çelik Uzuner, Salim Çam, Uğur Uzuner
{"title":"Evaluation of the mechanical properties and cell cultural behavior of diamond lattice scaffolds with different porosities.","authors":"Hojjat Ghahramanzadeh Asl, Selcen Çelik Uzuner, Salim Çam, Uğur Uzuner","doi":"10.1177/09544119251328434","DOIUrl":null,"url":null,"abstract":"<p><p>Metal porous structures are a common treatment for bone tissue loss when the loss exceeds the self-repair capacity of the human body. The structural characteristics, mechanical properties, and biological behavior of scaffold biomaterials exert a significant influence on the formation of new bone cells. The objective of this study was to ascertain the mechanical and cell biological behavior of scaffold structures with four distinct porosities (60%, 70%, 80%, and 90%). Scaffold structures with a diamond lattice unit cell were manufactured by the selective laser melting method using a CoCr alloy powder with a diameter of 4 mm and a height of 5 mm and were then subjected to a static compression test. Subsequently, human gingival fibroblast cells were seeded into each sample via the cell culture process, and cell formation was observed. According to the results obtained from the compression test, the sample with 60% porosity demonstrated optimal mechanical performance and effective modulus of elasticity. In the cell culture process, the sample with 60% porosity exhibited the highest adherence rate.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"9544119251328434"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251328434","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal porous structures are a common treatment for bone tissue loss when the loss exceeds the self-repair capacity of the human body. The structural characteristics, mechanical properties, and biological behavior of scaffold biomaterials exert a significant influence on the formation of new bone cells. The objective of this study was to ascertain the mechanical and cell biological behavior of scaffold structures with four distinct porosities (60%, 70%, 80%, and 90%). Scaffold structures with a diamond lattice unit cell were manufactured by the selective laser melting method using a CoCr alloy powder with a diameter of 4 mm and a height of 5 mm and were then subjected to a static compression test. Subsequently, human gingival fibroblast cells were seeded into each sample via the cell culture process, and cell formation was observed. According to the results obtained from the compression test, the sample with 60% porosity demonstrated optimal mechanical performance and effective modulus of elasticity. In the cell culture process, the sample with 60% porosity exhibited the highest adherence rate.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.