Pulmonary stretch receptor modulation of synaptic inhibition shapes the discharge pattern of respiratory premotor neurons

IF 1.9 4区 医学 Q3 PHYSIOLOGY
Edward J. Zuperku , Francis A. Hopp , Astrid G. Stucke
{"title":"Pulmonary stretch receptor modulation of synaptic inhibition shapes the discharge pattern of respiratory premotor neurons","authors":"Edward J. Zuperku ,&nbsp;Francis A. Hopp ,&nbsp;Astrid G. Stucke","doi":"10.1016/j.resp.2025.104420","DOIUrl":null,"url":null,"abstract":"<div><div>Many studies focus on the mechanisms of respiratory rhythm generation through neuronal interactions in the preBötzinger and Bötzinger complex area. There is limited insight into how the varied discharge patterns of propriobulbar, rhythm generating neurons are integrated to generate the slowly augmenting and decrementing discharge patterns observed in respiratory premotor neurons. Neuronal discharge patterns were obtained, <em>in vivo</em>, from inspiratory (I) and expiratory (E) premotor neurons in the ventral respiratory group of adult, anesthetized and vagotomized canines. Electrical activation of vagal afferents was used to produce pulmonary stretch receptor (PSR), step-input patterns, throughout or within either the I- or E-phase. PSR inputs decreased the discharge pattern slopes of augmenting and decrementing E-neurons and increased the slopes of augmenting and decrementing I-neurons. PSR inputs that were applied only for part of the phase acutely changed the discharge pattern to the trajectory associated with those PSR throughout-phase inputs, but the pattern returned immediately to the original trajectory after the PSR input terminated. These types of responses can be reproduced with high fidelity by a mathematical model based on reciprocal inhibition between augmenting and decrementing neurons of the same respiratory phase. Best fit is achieved when PSR inputs solely modulate the strength of the synaptic inhibition of decrementing neurons by augmenting neurons at the presynaptic level. Leaky integrator functions are not necessary to generate the gradually augmenting and decrementing patterns. This model offers a novel and different mechanistic way to conceptualize the generation and PSR control of respiratory discharge patterns.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"336 ","pages":"Article 104420"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156990482500031X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many studies focus on the mechanisms of respiratory rhythm generation through neuronal interactions in the preBötzinger and Bötzinger complex area. There is limited insight into how the varied discharge patterns of propriobulbar, rhythm generating neurons are integrated to generate the slowly augmenting and decrementing discharge patterns observed in respiratory premotor neurons. Neuronal discharge patterns were obtained, in vivo, from inspiratory (I) and expiratory (E) premotor neurons in the ventral respiratory group of adult, anesthetized and vagotomized canines. Electrical activation of vagal afferents was used to produce pulmonary stretch receptor (PSR), step-input patterns, throughout or within either the I- or E-phase. PSR inputs decreased the discharge pattern slopes of augmenting and decrementing E-neurons and increased the slopes of augmenting and decrementing I-neurons. PSR inputs that were applied only for part of the phase acutely changed the discharge pattern to the trajectory associated with those PSR throughout-phase inputs, but the pattern returned immediately to the original trajectory after the PSR input terminated. These types of responses can be reproduced with high fidelity by a mathematical model based on reciprocal inhibition between augmenting and decrementing neurons of the same respiratory phase. Best fit is achieved when PSR inputs solely modulate the strength of the synaptic inhibition of decrementing neurons by augmenting neurons at the presynaptic level. Leaky integrator functions are not necessary to generate the gradually augmenting and decrementing patterns. This model offers a novel and different mechanistic way to conceptualize the generation and PSR control of respiratory discharge patterns.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
8.70%
发文量
104
审稿时长
54 days
期刊介绍: Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense. Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as: -Mechanics of breathing- Gas exchange and acid-base balance- Respiration at rest and exercise- Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen- Embryonic and adult respiration- Comparative respiratory physiology. Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信