A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma.

IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY
Toxins Pub Date : 2025-03-10 DOI:10.3390/toxins17030129
Miral Javed, Wei Cao, Linyi Tang, Kevin M Keener
{"title":"A Review of Decontamination <i>of Aspergillus</i> spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma.","authors":"Miral Javed, Wei Cao, Linyi Tang, Kevin M Keener","doi":"10.3390/toxins17030129","DOIUrl":null,"url":null,"abstract":"<p><p><i>Aspergillus</i> spp. and their produced aflatoxins are responsible for contaminating 25-30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, <i>Aspergillus</i> spp. and aflatoxin contamination is still a global challenge, especially in cereal-based matrices and their derived by-products. The methods for reducing <i>Aspergillus</i> spp. and aflatoxin contamination involve various approaches, including physical, chemical, and biological control strategies. Recently, a novel technology, atmospheric cold plasma (ACP), has emerged which can reduce mold populations and also degrade these toxins. ACP is a non-thermal technology that operates at room temperature and atmospheric pressure. It can reduce mold and toxins from grains and seeds without affecting food quality or leaving any chemical residue. ACP is the conversion of a gas, such as air, into a reactive gas. Specifically, an electrical charge is applied to the \"working\" gas (air) leading to the breakdown of diatomic oxygen, diatomic nitrogen, and water vapor into a mixture of radicals (e.g., atomic oxygen, atomic nitrogen, atomic hydrogen, hydroxyls), metastable species, and ions (e.g., nitrate, nitrite, peroxynitrate). In a cold plasma process, approximately 5% or less of the working gas is ionized. However, cold plasma treatment can generate over 1000 ppm of reactive gas species (RGS). The final result is a range of bactericidal and fungicidal molecules such as ozone, peroxides, nitrates, and many others. This review provides an overview of the mechanisms and chemistry of ACP and its application in inactivating <i>Aspergillus</i> spp. and degrading aflatoxins, serving as a novel treatment to enhance the safety and quality of grains and nuts. The final section of the review discusses the commercialization status of ACP treatment.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945501/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17030129","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25-30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global challenge, especially in cereal-based matrices and their derived by-products. The methods for reducing Aspergillus spp. and aflatoxin contamination involve various approaches, including physical, chemical, and biological control strategies. Recently, a novel technology, atmospheric cold plasma (ACP), has emerged which can reduce mold populations and also degrade these toxins. ACP is a non-thermal technology that operates at room temperature and atmospheric pressure. It can reduce mold and toxins from grains and seeds without affecting food quality or leaving any chemical residue. ACP is the conversion of a gas, such as air, into a reactive gas. Specifically, an electrical charge is applied to the "working" gas (air) leading to the breakdown of diatomic oxygen, diatomic nitrogen, and water vapor into a mixture of radicals (e.g., atomic oxygen, atomic nitrogen, atomic hydrogen, hydroxyls), metastable species, and ions (e.g., nitrate, nitrite, peroxynitrate). In a cold plasma process, approximately 5% or less of the working gas is ionized. However, cold plasma treatment can generate over 1000 ppm of reactive gas species (RGS). The final result is a range of bactericidal and fungicidal molecules such as ozone, peroxides, nitrates, and many others. This review provides an overview of the mechanisms and chemistry of ACP and its application in inactivating Aspergillus spp. and degrading aflatoxins, serving as a novel treatment to enhance the safety and quality of grains and nuts. The final section of the review discusses the commercialization status of ACP treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxins
Toxins TOXICOLOGY-
CiteScore
7.50
自引率
16.70%
发文量
765
审稿时长
16.24 days
期刊介绍: Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信