{"title":"Past, Current and Future Techniques for Monitoring Paralytic Shellfish Toxins in Bivalve Molluscs.","authors":"Sarah C Finch, D Tim Harwood","doi":"10.3390/toxins17030105","DOIUrl":null,"url":null,"abstract":"<p><p>Paralytic shellfish poisoning is a threat to human health caused by the consumption of shellfish contaminated with toxins of the saxitoxin class. Human health is protected by the setting of regulatory limits and the analysis of shellfish prior to sale. Both robust toxicity data, generated from experiments fitting into the ethical 3R framework, and appropriate analysis methods are required to ensure the success of this approach. A literature review of in vivo animal bioassays and in vitro and analytical methods showed that in vitro methods are the best option to screen shellfish for non-regulatory purposes. However, since neither the receptor nor antibody binding of paralytic shellfish toxin analogues correlate with toxicity, these assays cannot accurately quantify toxicity in shellfish nor be used to calculate toxicity equivalence factors. Fully replacing animals in testing is rightfully the ultimate goal, but this cannot be at a cost to human health. More modern technology, such as organ-on-a-chip, represent an exciting development, but animal bioassays cannot currently be replaced in the determination of toxicity. Analytical methods that employ toxicity equivalence factors calculated using oral animal toxicity data result in an accurate assessment of the food safety risk posed by paralytic shellfish toxin contamination in bivalve molluscs.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945588/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17030105","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Paralytic shellfish poisoning is a threat to human health caused by the consumption of shellfish contaminated with toxins of the saxitoxin class. Human health is protected by the setting of regulatory limits and the analysis of shellfish prior to sale. Both robust toxicity data, generated from experiments fitting into the ethical 3R framework, and appropriate analysis methods are required to ensure the success of this approach. A literature review of in vivo animal bioassays and in vitro and analytical methods showed that in vitro methods are the best option to screen shellfish for non-regulatory purposes. However, since neither the receptor nor antibody binding of paralytic shellfish toxin analogues correlate with toxicity, these assays cannot accurately quantify toxicity in shellfish nor be used to calculate toxicity equivalence factors. Fully replacing animals in testing is rightfully the ultimate goal, but this cannot be at a cost to human health. More modern technology, such as organ-on-a-chip, represent an exciting development, but animal bioassays cannot currently be replaced in the determination of toxicity. Analytical methods that employ toxicity equivalence factors calculated using oral animal toxicity data result in an accurate assessment of the food safety risk posed by paralytic shellfish toxin contamination in bivalve molluscs.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.