Pâmela Carvalho-Moore, Ednaldo A Borgato, Luan Cutti, Aimone Porri, Ingo Meiners, Jens Lerchl, Jason K Norsworthy, Eric L Patterson
{"title":"A rearranged Amaranthus palmeri extrachromosomal circular DNA confers resistance to glyphosate and glufosinate.","authors":"Pâmela Carvalho-Moore, Ednaldo A Borgato, Luan Cutti, Aimone Porri, Ingo Meiners, Jens Lerchl, Jason K Norsworthy, Eric L Patterson","doi":"10.1093/plcell/koaf069","DOIUrl":null,"url":null,"abstract":"<p><p>Some herbicide-resistant weeds become resistant by generating additional copies of specific loci. For example, amplification of the locus encoding chloroplastic glutamine synthetase (GS2) produces herbicide resistance in the glufosinate-resistant Palmer amaranth (Amaranthus palmeri) accession MSR2. Previously, overamplification of the glyphosate-resistant gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in Palmer amaranth was determined to be driven by an extrachromosomal circular DNA (eccDNA). Here, we describe a rearranged eccDNA that confers resistance to both glyphosate and glufosinate ammonium due to the coduplication of the native chromosomal regions that contain the genes that encode for these herbicides target proteins. In addition to EPSPS, the replicon carries 2 GS2 isoforms (GS2.1 and GS2.2) and other genes. MSR2 samples harbored eccDNA carrying only EPSPS coexisting with eccDNAs harboring both EPSPS and GS2. A second glufosinate-resistant Palmer amaranth accession (MSR1) showed distinct GS2.1 and GS2.2 amplification patterns from MSR2, suggesting the existence of diverse replicons in Palmer amaranth. EPSPS copy number was correlated with both GS2 isoforms copy number in MSR2, further supporting the coexistence of these genes in the same replicon. These findings shed light on the complexity of eccDNA formation in plant systems, with the collection and accumulation of extra pieces of DNA.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koaf069","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Some herbicide-resistant weeds become resistant by generating additional copies of specific loci. For example, amplification of the locus encoding chloroplastic glutamine synthetase (GS2) produces herbicide resistance in the glufosinate-resistant Palmer amaranth (Amaranthus palmeri) accession MSR2. Previously, overamplification of the glyphosate-resistant gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in Palmer amaranth was determined to be driven by an extrachromosomal circular DNA (eccDNA). Here, we describe a rearranged eccDNA that confers resistance to both glyphosate and glufosinate ammonium due to the coduplication of the native chromosomal regions that contain the genes that encode for these herbicides target proteins. In addition to EPSPS, the replicon carries 2 GS2 isoforms (GS2.1 and GS2.2) and other genes. MSR2 samples harbored eccDNA carrying only EPSPS coexisting with eccDNAs harboring both EPSPS and GS2. A second glufosinate-resistant Palmer amaranth accession (MSR1) showed distinct GS2.1 and GS2.2 amplification patterns from MSR2, suggesting the existence of diverse replicons in Palmer amaranth. EPSPS copy number was correlated with both GS2 isoforms copy number in MSR2, further supporting the coexistence of these genes in the same replicon. These findings shed light on the complexity of eccDNA formation in plant systems, with the collection and accumulation of extra pieces of DNA.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.