When Large Language Models Meet Evolutionary Algorithms: Potential Enhancements and Challenges.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-03-27 eCollection Date: 2025-01-01 DOI:10.34133/research.0646
Chao Wang, Jiaxuan Zhao, Licheng Jiao, Lingling Li, Fang Liu, Shuyuan Yang
{"title":"When Large Language Models Meet Evolutionary Algorithms: Potential Enhancements and Challenges.","authors":"Chao Wang, Jiaxuan Zhao, Licheng Jiao, Lingling Li, Fang Liu, Shuyuan Yang","doi":"10.34133/research.0646","DOIUrl":null,"url":null,"abstract":"<p><p>Pre-trained large language models (LLMs) exhibit powerful capabilities for generating natural text. Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems. Motivated by the common collective and directionality of text generation and evolution, this paper first illustrates the conceptual parallels between LLMs and EAs at a micro level, which includes multiple one-to-one key characteristics: token representation and individual representation, position encoding and fitness shaping, position embedding and selection, Transformers block and reproduction, and model training and parameter adaptation. These parallels highlight potential opportunities for technical advancements in both LLMs and EAs. Subsequently, we analyze existing interdisciplinary research from a macro perspective to uncover critical challenges, with a particular focus on evolutionary fine-tuning and LLM-enhanced EAs. These analyses not only provide insights into the evolutionary mechanisms behind LLMs but also offer potential directions for enhancing the capabilities of artificial agents.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0646"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0646","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Pre-trained large language models (LLMs) exhibit powerful capabilities for generating natural text. Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems. Motivated by the common collective and directionality of text generation and evolution, this paper first illustrates the conceptual parallels between LLMs and EAs at a micro level, which includes multiple one-to-one key characteristics: token representation and individual representation, position encoding and fitness shaping, position embedding and selection, Transformers block and reproduction, and model training and parameter adaptation. These parallels highlight potential opportunities for technical advancements in both LLMs and EAs. Subsequently, we analyze existing interdisciplinary research from a macro perspective to uncover critical challenges, with a particular focus on evolutionary fine-tuning and LLM-enhanced EAs. These analyses not only provide insights into the evolutionary mechanisms behind LLMs but also offer potential directions for enhancing the capabilities of artificial agents.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信