Transport of Volatiles in Agglutinates from Lunar Regolith of Chang'e-5 Mission.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-03-27 eCollection Date: 2025-01-01 DOI:10.34133/research.0638
Long Li, Guang Zhang, Hui Zhang, Yuan Xiao, Shaofan Zhao, Jian Song, Wei Yao, Weihua Wang, Zhigang Zou, Mengfei Yang
{"title":"Transport of Volatiles in Agglutinates from Lunar Regolith of Chang'e-5 Mission.","authors":"Long Li, Guang Zhang, Hui Zhang, Yuan Xiao, Shaofan Zhao, Jian Song, Wei Yao, Weihua Wang, Zhigang Zou, Mengfei Yang","doi":"10.34133/research.0638","DOIUrl":null,"url":null,"abstract":"<p><p>Agglutinate particles, an important component resulting from micrometeoroids impacts, account for about 13.4% to 84.7% of the volume of lunar regolith depending on its maturity. They are crucial in the soil's evolution and the migration of volatile substances. Here, we examined a representative agglutinate particle from Chang'e-5 samples and modeled how volatiles move through its porous framework. Our analysis revealed that the agglutinate's surface features a patchy distribution of smooth, open pores, as shown by both surface and 3-dimensional structural assessments. By integrating elemental distribution data, we propose that the formation of these smooth, open pores is primarily due to the flow of gaseous volatiles, byproducts of intricate physiochemical reactions occurring in the lunar surface layer during impacts by micrometeoroids. Numerical models of volatile transport in the porous agglutinate have been developed for different flow regimes. These models demonstrate that under the intense conditions of impacts, the transport of volatiles occurs at a remarkably high velocity. Consequently, it is improbable that water would accumulate within the porous structure of lunar soil agglutinates. Nevertheless, understanding this process is valuable for gaining a deeper understanding of the lunar regolith's development and for potential future endeavors in extracting water from the lunar surface.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0638"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0638","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Agglutinate particles, an important component resulting from micrometeoroids impacts, account for about 13.4% to 84.7% of the volume of lunar regolith depending on its maturity. They are crucial in the soil's evolution and the migration of volatile substances. Here, we examined a representative agglutinate particle from Chang'e-5 samples and modeled how volatiles move through its porous framework. Our analysis revealed that the agglutinate's surface features a patchy distribution of smooth, open pores, as shown by both surface and 3-dimensional structural assessments. By integrating elemental distribution data, we propose that the formation of these smooth, open pores is primarily due to the flow of gaseous volatiles, byproducts of intricate physiochemical reactions occurring in the lunar surface layer during impacts by micrometeoroids. Numerical models of volatile transport in the porous agglutinate have been developed for different flow regimes. These models demonstrate that under the intense conditions of impacts, the transport of volatiles occurs at a remarkably high velocity. Consequently, it is improbable that water would accumulate within the porous structure of lunar soil agglutinates. Nevertheless, understanding this process is valuable for gaining a deeper understanding of the lunar regolith's development and for potential future endeavors in extracting water from the lunar surface.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信