The carboxylesterase AtCXE12 converts volatile (Z)-3-hexenyl acetate to (Z)-3-hexenol in Arabidopsis leaves.

IF 6.5 1区 生物学 Q1 PLANT SCIENCES
Tristan M Cofer, James H Tumlinson
{"title":"The carboxylesterase AtCXE12 converts volatile (Z)-3-hexenyl acetate to (Z)-3-hexenol in Arabidopsis leaves.","authors":"Tristan M Cofer, James H Tumlinson","doi":"10.1093/plphys/kiaf119","DOIUrl":null,"url":null,"abstract":"<p><p>The green leaf volatiles (GLVs) (Z)-3-hexenal, (Z)-3-hexenol, and (Z)-3-hexenyl acetate play important roles in plant defense, deterring insect herbivores and attracting their natural enemies, while also serving as airborne signaling molecules capable of enhancing defenses in undamaged plant tissues. Almost all plants produce GLVs after wounding, beginning with the formation of (Z)-3-hexenal, which is subsequently converted to (Z)-3-hexenol and (Z)-3-hexenyl acetate. (Z)-3-hexenyl acetate can then be taken up by nearby plant tissues where it is predicted to be hydrolyzed to (Z)-3-hexenol, a process that is likely to be important in regulating the specific activities of these compounds. However, the enzyme(s) involved in this process and its role in plant defense are largely unknown. Here, we show that Arabidopsis (Arabidopsis thaliana) plants rapidly take up (Z)-3-hexenyl acetate and convert it to (Z)-3-hexenol. Inhibitor and fractionation experiments identified the carboxylesterases Carboxylesterase 5 (AtCXE5) and Carboxylesterase 12 (AtCXE12) as likely contributors to the (Z)-3-hexenyl acetate esterase activity in Arabidopsis leaves. Heterologous expression of AtCXE5 and AtCXE12 in Escherichia colirevealed that both recombinant enzymes hydrolyze (Z)-3-hexenyl acetate to (Z)-3-hexenol. Furthermore, assays using T-DNA insertion mutants showed that AtCXE12 significantly contributes to (Z)-3-hexenyl acetate hydrolysis in Arabidopsis. Lastly, we found that leaves from several other plant species possess (Z)-3-hexenyl acetate esterase activity, suggesting a conserved mechanism for GLV metabolism among plants. Overall, our study provides a better understanding of the biosynthesis and conversion dynamics of GLVs, which is necessary for unraveling the potential functions of these compounds.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf119","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The green leaf volatiles (GLVs) (Z)-3-hexenal, (Z)-3-hexenol, and (Z)-3-hexenyl acetate play important roles in plant defense, deterring insect herbivores and attracting their natural enemies, while also serving as airborne signaling molecules capable of enhancing defenses in undamaged plant tissues. Almost all plants produce GLVs after wounding, beginning with the formation of (Z)-3-hexenal, which is subsequently converted to (Z)-3-hexenol and (Z)-3-hexenyl acetate. (Z)-3-hexenyl acetate can then be taken up by nearby plant tissues where it is predicted to be hydrolyzed to (Z)-3-hexenol, a process that is likely to be important in regulating the specific activities of these compounds. However, the enzyme(s) involved in this process and its role in plant defense are largely unknown. Here, we show that Arabidopsis (Arabidopsis thaliana) plants rapidly take up (Z)-3-hexenyl acetate and convert it to (Z)-3-hexenol. Inhibitor and fractionation experiments identified the carboxylesterases Carboxylesterase 5 (AtCXE5) and Carboxylesterase 12 (AtCXE12) as likely contributors to the (Z)-3-hexenyl acetate esterase activity in Arabidopsis leaves. Heterologous expression of AtCXE5 and AtCXE12 in Escherichia colirevealed that both recombinant enzymes hydrolyze (Z)-3-hexenyl acetate to (Z)-3-hexenol. Furthermore, assays using T-DNA insertion mutants showed that AtCXE12 significantly contributes to (Z)-3-hexenyl acetate hydrolysis in Arabidopsis. Lastly, we found that leaves from several other plant species possess (Z)-3-hexenyl acetate esterase activity, suggesting a conserved mechanism for GLV metabolism among plants. Overall, our study provides a better understanding of the biosynthesis and conversion dynamics of GLVs, which is necessary for unraveling the potential functions of these compounds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信