Helen Goodluck, Alice Zemljic-Harpf, Ony Araujo Galdino, Sadhana Kanoo, Natalia Lopez, Young Chul Kim, Volker Vallon
{"title":"Effects of sotagliflozin on kidney and cardiac outcome in a hypertensive model of subtotal nephrectomy in male mice.","authors":"Helen Goodluck, Alice Zemljic-Harpf, Ony Araujo Galdino, Sadhana Kanoo, Natalia Lopez, Young Chul Kim, Volker Vallon","doi":"10.14814/phy2.70217","DOIUrl":null,"url":null,"abstract":"<p><p>Dual inhibition of sodium glucose cotransporters 1 and 2 (SGLT1/SGLT2) by sotagliflozin protects the kidney and heart in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD). To gain mechanistic insights, the current study aimed to establish a murine model of hypertensive CKD that shows cardio-renal protection by sotagliflozin. Since protection by SGLT2 inhibitors can be diabetes-independent, a nondiabetic murine model of subtotal nephrectomy with angiotensin II infusion-facilitated hypertension was followed for 7 weeks. The model showed 40% lower GFR, doubling in plasma FGF23, 50 mmHg higher systolic blood pressure (SBP), 100-fold increased albuminuria, and robust signs of kidney injury, inflammation, and fibrosis versus sham controls, associated with a 30% larger left cardiac ventricle and wall thickness and upregulation of markers of cardiac overload and fibrosis. Sotagliflozin, initiated 1 week after the last surgery, showed target-engagement evidenced by glucosuria, 9 mmHg lower SBP, temporal reduction in body weight and GFR, and 30% higher plasma GLP1. Sotagliflozin, however, did not improve markers of kidney injury, inflammation, fibrosis, albuminuria, and plasma FGF23, or signs of cardiac overload, fibrosis, or impaired function. Limited sotagliflozin responsiveness may relate to short treatment time, limited metabolic benefits in nondiabetic setting and/or the model's dominant angiotensin II-driven effects/hypertension.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 7","pages":"e70217"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dual inhibition of sodium glucose cotransporters 1 and 2 (SGLT1/SGLT2) by sotagliflozin protects the kidney and heart in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD). To gain mechanistic insights, the current study aimed to establish a murine model of hypertensive CKD that shows cardio-renal protection by sotagliflozin. Since protection by SGLT2 inhibitors can be diabetes-independent, a nondiabetic murine model of subtotal nephrectomy with angiotensin II infusion-facilitated hypertension was followed for 7 weeks. The model showed 40% lower GFR, doubling in plasma FGF23, 50 mmHg higher systolic blood pressure (SBP), 100-fold increased albuminuria, and robust signs of kidney injury, inflammation, and fibrosis versus sham controls, associated with a 30% larger left cardiac ventricle and wall thickness and upregulation of markers of cardiac overload and fibrosis. Sotagliflozin, initiated 1 week after the last surgery, showed target-engagement evidenced by glucosuria, 9 mmHg lower SBP, temporal reduction in body weight and GFR, and 30% higher plasma GLP1. Sotagliflozin, however, did not improve markers of kidney injury, inflammation, fibrosis, albuminuria, and plasma FGF23, or signs of cardiac overload, fibrosis, or impaired function. Limited sotagliflozin responsiveness may relate to short treatment time, limited metabolic benefits in nondiabetic setting and/or the model's dominant angiotensin II-driven effects/hypertension.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.