Apolline Maitre, Lourdes Mateos-Hernandez, Myriam Kratou, Natalia Egri, Jennifer Maye, Manel Juan, Adnan Hodžić, Dasiel Obregón, Lianet Abuin-Denis, Elianne Piloto-Sardinas, Andrea C Fogaça, Alejandro Cabezas-Cruz
{"title":"Effects of Live and Peptide-Based Antimicrobiota Vaccines on <i>Ixodes ricinus</i> Fitness, Microbiota, and Acquisition of Tick-Borne Pathogens.","authors":"Apolline Maitre, Lourdes Mateos-Hernandez, Myriam Kratou, Natalia Egri, Jennifer Maye, Manel Juan, Adnan Hodžić, Dasiel Obregón, Lianet Abuin-Denis, Elianne Piloto-Sardinas, Andrea C Fogaça, Alejandro Cabezas-Cruz","doi":"10.3390/pathogens14030206","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored the effects of antimicrobiota vaccines on the acquisition of <i>Borrelia</i> and <i>Rickettsia</i>, and on the microbiota composition of <i>Ixodes ricinus</i> ticks. Using a murine model, we investigated the immunological responses to live <i>Staphylococcus epidermidis</i> and multi-antigenic peptide (MAP) vaccines. Immunized mice were infected with either <i>Borrelia afzelii</i> or <i>Rickettsia helvetica</i>, and subsequently infested with pathogen-free <i>I. ricinus</i> nymphs. We monitored the tick feeding behavior, survival rates, and infection levels. Additionally, we employed comprehensive microbiota analyses, including the alpha and beta diversity assessments and microbial co-occurrence network construction. Our results indicate that both live <i>S. epidermidis</i> and MAP vaccines elicited significant antibody responses in mice, with notable bactericidal effects against <i>S. epidermidis</i>. The vaccination altered the feeding patterns and fitness of the ticks, with the Live vaccine group showing a higher weight and faster feeding time. Microbiota analysis revealed significant shifts in the beta diversity between vaccine groups, with distinct microbial networks and taxa abundances observed. Notably, the MAP vaccine group exhibited a more robust and complex network structure, while the Live vaccine group demonstrated resilience to microbial perturbations. However, the effects of antimicrobiota vaccination on <i>Borrelia</i> acquisition appeared taxon-dependent, as inferred from our results and previous findings on microbiota-driven pathogen refractoriness. <i>Staphylococcus</i>-based vaccines altered the microbiota composition but had no effect on <i>B. afzelii</i> infection, and yielded inconclusive results for <i>R. helvetica</i>. In contrast, previous studies suggest that <i>E. coli</i>-based microbiota modulation can induce a pathogen-refractory state, highlighting the importance of both bacterial species and peptide selection in shaping microbiota-driven pathogen susceptibility. However, a direct comparison under identical experimental conditions across multiple taxa is required to confirm this taxon-specific effect. These findings suggest that antimicrobiota vaccination influences tick fitness and microbiota assembly, but its effects on pathogen transmission depend on the bacterial taxon targeted and the selected peptide epitopes. This research provides insights into the need for strategic bacterial taxon selection to enhance vaccine efficacy in controlling tick-borne diseases.</p>","PeriodicalId":19758,"journal":{"name":"Pathogens","volume":"14 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945021/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pathogens14030206","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored the effects of antimicrobiota vaccines on the acquisition of Borrelia and Rickettsia, and on the microbiota composition of Ixodes ricinus ticks. Using a murine model, we investigated the immunological responses to live Staphylococcus epidermidis and multi-antigenic peptide (MAP) vaccines. Immunized mice were infected with either Borrelia afzelii or Rickettsia helvetica, and subsequently infested with pathogen-free I. ricinus nymphs. We monitored the tick feeding behavior, survival rates, and infection levels. Additionally, we employed comprehensive microbiota analyses, including the alpha and beta diversity assessments and microbial co-occurrence network construction. Our results indicate that both live S. epidermidis and MAP vaccines elicited significant antibody responses in mice, with notable bactericidal effects against S. epidermidis. The vaccination altered the feeding patterns and fitness of the ticks, with the Live vaccine group showing a higher weight and faster feeding time. Microbiota analysis revealed significant shifts in the beta diversity between vaccine groups, with distinct microbial networks and taxa abundances observed. Notably, the MAP vaccine group exhibited a more robust and complex network structure, while the Live vaccine group demonstrated resilience to microbial perturbations. However, the effects of antimicrobiota vaccination on Borrelia acquisition appeared taxon-dependent, as inferred from our results and previous findings on microbiota-driven pathogen refractoriness. Staphylococcus-based vaccines altered the microbiota composition but had no effect on B. afzelii infection, and yielded inconclusive results for R. helvetica. In contrast, previous studies suggest that E. coli-based microbiota modulation can induce a pathogen-refractory state, highlighting the importance of both bacterial species and peptide selection in shaping microbiota-driven pathogen susceptibility. However, a direct comparison under identical experimental conditions across multiple taxa is required to confirm this taxon-specific effect. These findings suggest that antimicrobiota vaccination influences tick fitness and microbiota assembly, but its effects on pathogen transmission depend on the bacterial taxon targeted and the selected peptide epitopes. This research provides insights into the need for strategic bacterial taxon selection to enhance vaccine efficacy in controlling tick-borne diseases.
期刊介绍:
Pathogens (ISSN 2076-0817) publishes reviews, regular research papers and short notes on all aspects of pathogens and pathogen-host interactions. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.