Raphael D Isokpehi, Shaneka S Simmons, Angela U Makolo, Antoinesha L Hollman, Solayide A Adesida, Olabisi O Ojo, Amos O Abioye
{"title":"Insights into Functions of Universal Stress Proteins Encoded by Genomes of Gastric Cancer Pathogen <i>Helicobacter pylori</i> and Related Bacteria.","authors":"Raphael D Isokpehi, Shaneka S Simmons, Angela U Makolo, Antoinesha L Hollman, Solayide A Adesida, Olabisi O Ojo, Amos O Abioye","doi":"10.3390/pathogens14030275","DOIUrl":null,"url":null,"abstract":"<p><p>The genes that encode the universal stress protein (USP) family domain (pfam00582) aid the survival of bacteria in specific host or habitat-induced stress conditions. Genome sequencing revealed that the genome of <i>Helicobacter pylori</i>, a gastric cancer pathogen, typically contains one USP gene, while related helicobacters have one or two distinct USP genes. However, insights into the functions of <i>Helicobacteraceae</i> (<i>Helicobacter</i> and <i>Wolinella</i>) USP genes are still limited to inferences from large-scale genome sequencing. Thus, we have combined bioinformatics and visual analytics approaches to conduct a more comprehensive data investigation of a set of 1045 universal stress protein sequences encoded in 1014 genomes including 785 <i>Helicobacter pylori</i> genomes. The study generated a representative set of 183 USP sequences consisting of 180 <i>Helicobacter</i> sequences, two <i>Wolinella succinogenes</i> sequences, and a sequence from a related campylobacteria. We used the amino acid residues and positions of the 12 possible functional sites in 1030 sequences to identify 25 functional sites patterns for guiding studies on functional interactions of <i>Helicobacteraceae</i> USPs with ATP and other molecules. Genomic context searches and analysis identified USP genes of gastric and enterohepatic helicobacters that are adjacent or in operons with genes for proteins responsive to DNA-damaging oxidative stress (ATP-dependent proteases: ClpS and ClpA); and DNA uptake proteins (natural competence for transformation proteins: ComB6, ComB7, ComB8, ComB9, ComB10, ComBE, and conjugative transfer signal peptidase TraF). Since transcriptomic evidence indicates that oxidative stress and the presence of virulence-associated genes regulate the transcription of <i>H. pylori</i> USP gene, we recommend further research on <i>Helicobacter</i> USP genes and their neighboring genes in oxidative stress response and virulence of helicobacters. To facilitate the reuse of data and research, we produced interactive analytics resources of a dataset composed of values for variables including phylogeography of <i>H. pylori</i> strains, protein sequence features, and gene neighborhood.</p>","PeriodicalId":19758,"journal":{"name":"Pathogens","volume":"14 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944479/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pathogens14030275","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The genes that encode the universal stress protein (USP) family domain (pfam00582) aid the survival of bacteria in specific host or habitat-induced stress conditions. Genome sequencing revealed that the genome of Helicobacter pylori, a gastric cancer pathogen, typically contains one USP gene, while related helicobacters have one or two distinct USP genes. However, insights into the functions of Helicobacteraceae (Helicobacter and Wolinella) USP genes are still limited to inferences from large-scale genome sequencing. Thus, we have combined bioinformatics and visual analytics approaches to conduct a more comprehensive data investigation of a set of 1045 universal stress protein sequences encoded in 1014 genomes including 785 Helicobacter pylori genomes. The study generated a representative set of 183 USP sequences consisting of 180 Helicobacter sequences, two Wolinella succinogenes sequences, and a sequence from a related campylobacteria. We used the amino acid residues and positions of the 12 possible functional sites in 1030 sequences to identify 25 functional sites patterns for guiding studies on functional interactions of Helicobacteraceae USPs with ATP and other molecules. Genomic context searches and analysis identified USP genes of gastric and enterohepatic helicobacters that are adjacent or in operons with genes for proteins responsive to DNA-damaging oxidative stress (ATP-dependent proteases: ClpS and ClpA); and DNA uptake proteins (natural competence for transformation proteins: ComB6, ComB7, ComB8, ComB9, ComB10, ComBE, and conjugative transfer signal peptidase TraF). Since transcriptomic evidence indicates that oxidative stress and the presence of virulence-associated genes regulate the transcription of H. pylori USP gene, we recommend further research on Helicobacter USP genes and their neighboring genes in oxidative stress response and virulence of helicobacters. To facilitate the reuse of data and research, we produced interactive analytics resources of a dataset composed of values for variables including phylogeography of H. pylori strains, protein sequence features, and gene neighborhood.
期刊介绍:
Pathogens (ISSN 2076-0817) publishes reviews, regular research papers and short notes on all aspects of pathogens and pathogen-host interactions. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.