Vinicius Pietta Perez, Luciana Roberta Torini, Fernanda Zani Manieri, Suellen Bernardo de Queiroz, Jorhanna Isabelle Araujo de Brito Gomes, Lauro Santos Filho, Eloiza Helena Campana, Celso Jose Bruno de Oliveira, Eduardo Sergio Soares Sousa, Ilana Lopes Baratella Cunha Camargo
{"title":"Genomic Diversity, Virulome, and Resistome of <i>Streptococcus agalactiae</i> in Northeastern Brazil: Are Multi-Host Adapted Strains Rising?","authors":"Vinicius Pietta Perez, Luciana Roberta Torini, Fernanda Zani Manieri, Suellen Bernardo de Queiroz, Jorhanna Isabelle Araujo de Brito Gomes, Lauro Santos Filho, Eloiza Helena Campana, Celso Jose Bruno de Oliveira, Eduardo Sergio Soares Sousa, Ilana Lopes Baratella Cunha Camargo","doi":"10.3390/pathogens14030292","DOIUrl":null,"url":null,"abstract":"<p><p><i>Streptococcus agalactiae</i>, known as group B streptococci (GBS), colonizes the digestive and genitourinary tracts and causes neonatal diseases and infections in immunocompromised and elderly individuals. GBS neonatal disease prevention includes intrapartum antibiotic prophylaxis. We characterized 101 GBS isolates obtained from patients in João Pessoa, northeastern Brazil, owing to the need to develop and implement vaccines to prevent GBS infections. Capsular types were determined using multiplex-PCR, and antibiotic susceptibility profiles were determined using disc diffusion or the gradient strip method. Clonal diversity was evaluated using pulsed-field gel electrophoresis. Fourteen selected isolates had the genome sequenced and evaluated for virulence and resistance genes. The GBS population had high clonal diversity, with serotype Ia and V prevalence. Among the sequenced isolates, we detected antibiotic resistance genes (<i>ant(6)-Ia</i>, <i>catA8</i>, <i>ermA</i>, <i>ermB</i>, <i>lsaE</i>, <i>lsnuB</i>, <i>mefA</i>/<i>msrD</i>, <i>tetM</i>, <i>tetO</i>, and <i>tetS</i>), several virulence genes, and mobile genetic elements integrated into the chromosome. The most frequent Sequence Type (ST) was ST144, followed by ST196, ST28, ST19, ST12, ST23, ST103, and the new ST1983 (CC103). Phylogenetically, ST103 and ST1983 were distant from the other STs. Our data revealed highly virulent GBS strains in this population and a new ST that could be related to a zoonotic origin.</p>","PeriodicalId":19758,"journal":{"name":"Pathogens","volume":"14 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pathogens14030292","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Streptococcus agalactiae, known as group B streptococci (GBS), colonizes the digestive and genitourinary tracts and causes neonatal diseases and infections in immunocompromised and elderly individuals. GBS neonatal disease prevention includes intrapartum antibiotic prophylaxis. We characterized 101 GBS isolates obtained from patients in João Pessoa, northeastern Brazil, owing to the need to develop and implement vaccines to prevent GBS infections. Capsular types were determined using multiplex-PCR, and antibiotic susceptibility profiles were determined using disc diffusion or the gradient strip method. Clonal diversity was evaluated using pulsed-field gel electrophoresis. Fourteen selected isolates had the genome sequenced and evaluated for virulence and resistance genes. The GBS population had high clonal diversity, with serotype Ia and V prevalence. Among the sequenced isolates, we detected antibiotic resistance genes (ant(6)-Ia, catA8, ermA, ermB, lsaE, lsnuB, mefA/msrD, tetM, tetO, and tetS), several virulence genes, and mobile genetic elements integrated into the chromosome. The most frequent Sequence Type (ST) was ST144, followed by ST196, ST28, ST19, ST12, ST23, ST103, and the new ST1983 (CC103). Phylogenetically, ST103 and ST1983 were distant from the other STs. Our data revealed highly virulent GBS strains in this population and a new ST that could be related to a zoonotic origin.
期刊介绍:
Pathogens (ISSN 2076-0817) publishes reviews, regular research papers and short notes on all aspects of pathogens and pathogen-host interactions. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.