Yan Li, Xiaoyu Hao, Xiongbai Cao, Tingting Wang, Haolong Fan, Lingtao Zhan, Zhenru Zhou, Huixia Yang, Quanzhen Zhang, Roberto Costantini, Cesare Grazioli, Teng Zhang, Yeliang Wang
{"title":"Ultra-Fast Charge Transfer in P3HT Composites Using the Core Hole Clock Technique.","authors":"Yan Li, Xiaoyu Hao, Xiongbai Cao, Tingting Wang, Haolong Fan, Lingtao Zhan, Zhenru Zhou, Huixia Yang, Quanzhen Zhang, Roberto Costantini, Cesare Grazioli, Teng Zhang, Yeliang Wang","doi":"10.3390/nano15060433","DOIUrl":null,"url":null,"abstract":"<p><p>Charge transfer dynamics fundamentally influence energy conversion efficiency in excited electronic states, directly impacting photoelectric conversion, molecular electronics, and catalysis. The core hole clock (CHC) technique enables the precise measurement of interfacial charge transfer time, providing insights into the electronic structure and dynamics of organic and inorganic coupled systems. Among these materials, poly(3-hexylthiophene) (P3HT), a p-type semiconductor known for its high charge mobility, serves as an ideal model for charge transfer studies. This review discusses recent advancements in understanding charge transfer dynamics in P3HT-based composites through the application of the CHC technique. The studies are categorized into two main areas: (1) P3HT combined with carbon-based nanomaterials and (2) P3HT combined with 2D materials. These findings highlight the effectiveness of the CHC technique in probing interfacial charge transfer and emphasize the critical role of nanomaterial interfaces in modulating charge transfer, which is essential for advancing organic electronic devices and energy conversion systems.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945034/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15060433","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Charge transfer dynamics fundamentally influence energy conversion efficiency in excited electronic states, directly impacting photoelectric conversion, molecular electronics, and catalysis. The core hole clock (CHC) technique enables the precise measurement of interfacial charge transfer time, providing insights into the electronic structure and dynamics of organic and inorganic coupled systems. Among these materials, poly(3-hexylthiophene) (P3HT), a p-type semiconductor known for its high charge mobility, serves as an ideal model for charge transfer studies. This review discusses recent advancements in understanding charge transfer dynamics in P3HT-based composites through the application of the CHC technique. The studies are categorized into two main areas: (1) P3HT combined with carbon-based nanomaterials and (2) P3HT combined with 2D materials. These findings highlight the effectiveness of the CHC technique in probing interfacial charge transfer and emphasize the critical role of nanomaterial interfaces in modulating charge transfer, which is essential for advancing organic electronic devices and energy conversion systems.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.