Two doses of Qβ virus like particle vaccines elicit protective antibodies against heroin and fentanyl.

IF 6.9 1区 医学 Q1 IMMUNOLOGY
Isabella G Romano, Brandi Johnson-Weaver, Susan B Core, Andzoa N Jamus, Marcus Brackeen, Bruce Blough, Subhakar Dey, Yumei Huang, Herman Staats, William C Wetsel, Bryce Chackerian, Kathryn M Frietze
{"title":"Two doses of Qβ virus like particle vaccines elicit protective antibodies against heroin and fentanyl.","authors":"Isabella G Romano, Brandi Johnson-Weaver, Susan B Core, Andzoa N Jamus, Marcus Brackeen, Bruce Blough, Subhakar Dey, Yumei Huang, Herman Staats, William C Wetsel, Bryce Chackerian, Kathryn M Frietze","doi":"10.1038/s41541-025-01105-0","DOIUrl":null,"url":null,"abstract":"<p><p>Opioid overdoses and opioid use disorder (OUD) are major public health concerns. Current treatment approaches for OUD have failed to slow the growth of the opioid crisis. Opioid vaccines have shown pre-clinical success in targeting multiple different opioid drugs. However, the need for many immunizations can limit their clinical implementation. In this study, we investigate the development of novel opioid vaccines by independently targeting fentanyl and the active metabolites of heroin using a bacteriophage virus-like particle (VLP) vaccine platform. We establish the successful conjugation of haptens to bacteriophage Qβ VLPs and demonstrate immunogenicity of Qβ-fentanyl, Qβ-morphine, and Qβ-6-acetylmorphine in animal models after one or two immunizations. We show that these vaccines elicit high-titer, high-avidity, and durable antibody responses. Moreover, we reveal their protective capacities against heroin or fentanyl challenge after two immunizations. Overall, these findings establish Qβ-VLP conjugated vaccines for heroin and fentanyl as promising opioid vaccine candidates.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"10 1","pages":"57"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-025-01105-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Opioid overdoses and opioid use disorder (OUD) are major public health concerns. Current treatment approaches for OUD have failed to slow the growth of the opioid crisis. Opioid vaccines have shown pre-clinical success in targeting multiple different opioid drugs. However, the need for many immunizations can limit their clinical implementation. In this study, we investigate the development of novel opioid vaccines by independently targeting fentanyl and the active metabolites of heroin using a bacteriophage virus-like particle (VLP) vaccine platform. We establish the successful conjugation of haptens to bacteriophage Qβ VLPs and demonstrate immunogenicity of Qβ-fentanyl, Qβ-morphine, and Qβ-6-acetylmorphine in animal models after one or two immunizations. We show that these vaccines elicit high-titer, high-avidity, and durable antibody responses. Moreover, we reveal their protective capacities against heroin or fentanyl challenge after two immunizations. Overall, these findings establish Qβ-VLP conjugated vaccines for heroin and fentanyl as promising opioid vaccine candidates.

求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Vaccines
NPJ Vaccines Immunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍: Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信