Understanding episodic memory dynamics: Retrieval and updating mechanisms revealed by fMRI and tDCS

IF 4.7 2区 医学 Q1 NEUROIMAGING
Dong-ni Pan , CuiZhu Lin , Ma Xin , Oliver T. Wolf , Gui Xue , Xuebing Li
{"title":"Understanding episodic memory dynamics: Retrieval and updating mechanisms revealed by fMRI and tDCS","authors":"Dong-ni Pan ,&nbsp;CuiZhu Lin ,&nbsp;Ma Xin ,&nbsp;Oliver T. Wolf ,&nbsp;Gui Xue ,&nbsp;Xuebing Li","doi":"10.1016/j.neuroimage.2025.121170","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates brain mechanisms in memory preservation and alteration using a three-phase design: memory encoding (Day 1), interference under fMRI (Day 2), and testing (Day 3). Thirty-one participants completed the core experiment, supplemented by a tDCS study (<em>n</em> = 118) targeting the visual cortex. Original memories were more susceptible to incorrect updating during old-background/new-object interference compared to relearning and no-retrieval conditions. Interference trials elicited heightened activation in the Inferior Parietal Lobe (IPL), Dorsolateral Prefrontal Cortex (DLPFC), and Dorsal Anterior Cingulate Gyrus (dACC) versus no-retrieval controls, and increased frontoparietal and Occipital Fusiform Gyrus (OFG) activation versus relearning. Analyzing interference trials by Day 3 outcomes revealed preserved memories correlated with stronger cingulo-opercular and frontoparietal activation (indicating effective conflict resolution), whereas updated memories showed elevated OFG activity (suggesting new sensory integration). Crucially, IPL/DLPFC activation during interference positively correlated with original memory accuracy, while OFG activation showed negative correlation. tDCS stimulation of the occipital cortex during memory reactivation significantly enhanced memory updating, confirming visual cortex involvement in contextual distortion. Findings demonstrate distinct neural profiles underlie memory outcomes: preserved memories require efficient conflict processing networks, while perceptual interference during reactivation promotes updates through sensory integration systems. This supports targeted neuromodulation approaches for memory modification, highlighting intervention potential through visual cortex engagement during critical memory phases.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"310 ","pages":"Article 121170"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925001727","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates brain mechanisms in memory preservation and alteration using a three-phase design: memory encoding (Day 1), interference under fMRI (Day 2), and testing (Day 3). Thirty-one participants completed the core experiment, supplemented by a tDCS study (n = 118) targeting the visual cortex. Original memories were more susceptible to incorrect updating during old-background/new-object interference compared to relearning and no-retrieval conditions. Interference trials elicited heightened activation in the Inferior Parietal Lobe (IPL), Dorsolateral Prefrontal Cortex (DLPFC), and Dorsal Anterior Cingulate Gyrus (dACC) versus no-retrieval controls, and increased frontoparietal and Occipital Fusiform Gyrus (OFG) activation versus relearning. Analyzing interference trials by Day 3 outcomes revealed preserved memories correlated with stronger cingulo-opercular and frontoparietal activation (indicating effective conflict resolution), whereas updated memories showed elevated OFG activity (suggesting new sensory integration). Crucially, IPL/DLPFC activation during interference positively correlated with original memory accuracy, while OFG activation showed negative correlation. tDCS stimulation of the occipital cortex during memory reactivation significantly enhanced memory updating, confirming visual cortex involvement in contextual distortion. Findings demonstrate distinct neural profiles underlie memory outcomes: preserved memories require efficient conflict processing networks, while perceptual interference during reactivation promotes updates through sensory integration systems. This supports targeted neuromodulation approaches for memory modification, highlighting intervention potential through visual cortex engagement during critical memory phases.
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信