Ensemble network using oblique coronal MRI for Alzheimer’s disease diagnosis

IF 4.7 2区 医学 Q1 NEUROIMAGING
Cunhao Li , Zhongjian Gao , Xiaomei Chen , Xuqiang Zheng , Xiaoman Zhang , Chih-Yang Lin , Alzheimer’s Disease Neuroimaging Initiative
{"title":"Ensemble network using oblique coronal MRI for Alzheimer’s disease diagnosis","authors":"Cunhao Li ,&nbsp;Zhongjian Gao ,&nbsp;Xiaomei Chen ,&nbsp;Xuqiang Zheng ,&nbsp;Xiaoman Zhang ,&nbsp;Chih-Yang Lin ,&nbsp;Alzheimer’s Disease Neuroimaging Initiative","doi":"10.1016/j.neuroimage.2025.121151","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s disease (AD) is a primary degenerative brain disorder commonly found in the elderly, Mild cognitive impairment (MCI) can be considered a transitional stage from normal aging to Alzheimer’s disease. Therefore, distinguishing between normal aging and disease-induced neurofunctional impairments is crucial in clinical treatment. Although deep learning methods have been widely applied in Alzheimer’s diagnosis, the varying data formats used by different methods limited their clinical applicability. In this study, based on the ADNI dataset and previous clinical diagnostic experience, we propose a method using oblique coronal MRI to assist in diagnosis. We developed an algorithm to extract oblique coronal slices from 3D MRI data and used these slices to train classification networks. To achieve subject-wise classification based on 2D slices, rather than image-wise classification, we employed ensemble learning methods. This approach fused classification results from different modality images or different positions of the same modality images, constructing a more reliable ensemble classification model. The experiments introduced various decision fusion and feature fusion schemes, demonstrating the potential of oblique coronal MRI slices in assisting diagnosis. Notably, the weighted voting from decision fusion strategy trained on oblique coronal slices achieved accuracy rates of 97.5% for CN vs. AD, 100% for CN vs. MCI, and 94.83% for MCI vs. AD across the three classification tasks.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"310 ","pages":"Article 121151"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925001533","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s disease (AD) is a primary degenerative brain disorder commonly found in the elderly, Mild cognitive impairment (MCI) can be considered a transitional stage from normal aging to Alzheimer’s disease. Therefore, distinguishing between normal aging and disease-induced neurofunctional impairments is crucial in clinical treatment. Although deep learning methods have been widely applied in Alzheimer’s diagnosis, the varying data formats used by different methods limited their clinical applicability. In this study, based on the ADNI dataset and previous clinical diagnostic experience, we propose a method using oblique coronal MRI to assist in diagnosis. We developed an algorithm to extract oblique coronal slices from 3D MRI data and used these slices to train classification networks. To achieve subject-wise classification based on 2D slices, rather than image-wise classification, we employed ensemble learning methods. This approach fused classification results from different modality images or different positions of the same modality images, constructing a more reliable ensemble classification model. The experiments introduced various decision fusion and feature fusion schemes, demonstrating the potential of oblique coronal MRI slices in assisting diagnosis. Notably, the weighted voting from decision fusion strategy trained on oblique coronal slices achieved accuracy rates of 97.5% for CN vs. AD, 100% for CN vs. MCI, and 94.83% for MCI vs. AD across the three classification tasks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信