Talal Alshehri, Amar Yasser Jassim, Bo Cai, Tammi L Richardson, Mohammed Baalousha
{"title":"Comparative Assessment of the Impacts of Wildland-Urban Interface Fire Ash on Growth of the Diatom <i>Thalassiosira weissflogii</i>.","authors":"Talal Alshehri, Amar Yasser Jassim, Bo Cai, Tammi L Richardson, Mohammed Baalousha","doi":"10.3390/nano15060422","DOIUrl":null,"url":null,"abstract":"<p><p>Fires at the wildland-urban interface (WUI) result in the release of ash into the atmosphere that can be transported for long distances and deposited on land and in oceans. Wildfire ash has the potential to increase phytoplankton biomass in the open ocean by providing both major nutrients and trace metals. However, fires that originate at the WUI contain potentially toxic concentrations of metals such as Ti, Cr, Cu, Pb, and Zn, especially in coastal oceans close to WUI fires, where ash deposition rates are high. Here, we investigated the impact of fire ash from different sources originating from vegetation, structures, and vehicles on growth of the diatom <i>Thalassiosira weissflogii</i> (<i>T. weissflogii</i>). The diatom was exposed to ash suspensions containing equimolar concentrations of 10 and 50 µM Fe. The concentration of potentially toxic metals (e.g., Ti, Cu, and Zn) in the exposure suspensions decreased following the order vehicle ash suspension > structural ash suspension > vegetation ash suspension. Growth rates (GR) of <i>T. weissflogii</i> were between 0.44 d<sup>-1</sup> and 0.52 d<sup>-1</sup> in the controls, and varied with ash types, following the order vegetation (GR = 0.40 d<sup>-1</sup> to 0.48 d<sup>-1</sup>) > vehicle (GR = 0.06 d<sup>-1</sup> to 0.46 d<sup>-1</sup>) > structure (GR = 0.02 d<sup>-1</sup> to 0.31 d<sup>-1</sup>) ash. Two ash samples (A 131 and A136) completely inhibited the growth of <i>T. weissflogii</i>, possibly due to high Ti, Cu, and Zn concentrations in the form of (nano)particles. Overall, this study showed that structural and vehicle ash, with high concentrations of potentially toxic metals, significantly suppress the growth of <i>T. weissflogii</i>, whereas vegetation ash with high concentrations of Fe and Mn but low concentrations of potentially toxic metals had no significant beneficial or suppressive effect. High concentrations of the metals Ti, Cu, and Zn in the form of nano(particles) in structural and vehicle ash are possible sources of toxicity to diatom growth. This study provides valuable insights into the potential impacts of WUI fires on aquatic ecosystems and can inform management strategies aimed at reducing these impacts.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944898/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15060422","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fires at the wildland-urban interface (WUI) result in the release of ash into the atmosphere that can be transported for long distances and deposited on land and in oceans. Wildfire ash has the potential to increase phytoplankton biomass in the open ocean by providing both major nutrients and trace metals. However, fires that originate at the WUI contain potentially toxic concentrations of metals such as Ti, Cr, Cu, Pb, and Zn, especially in coastal oceans close to WUI fires, where ash deposition rates are high. Here, we investigated the impact of fire ash from different sources originating from vegetation, structures, and vehicles on growth of the diatom Thalassiosira weissflogii (T. weissflogii). The diatom was exposed to ash suspensions containing equimolar concentrations of 10 and 50 µM Fe. The concentration of potentially toxic metals (e.g., Ti, Cu, and Zn) in the exposure suspensions decreased following the order vehicle ash suspension > structural ash suspension > vegetation ash suspension. Growth rates (GR) of T. weissflogii were between 0.44 d-1 and 0.52 d-1 in the controls, and varied with ash types, following the order vegetation (GR = 0.40 d-1 to 0.48 d-1) > vehicle (GR = 0.06 d-1 to 0.46 d-1) > structure (GR = 0.02 d-1 to 0.31 d-1) ash. Two ash samples (A 131 and A136) completely inhibited the growth of T. weissflogii, possibly due to high Ti, Cu, and Zn concentrations in the form of (nano)particles. Overall, this study showed that structural and vehicle ash, with high concentrations of potentially toxic metals, significantly suppress the growth of T. weissflogii, whereas vegetation ash with high concentrations of Fe and Mn but low concentrations of potentially toxic metals had no significant beneficial or suppressive effect. High concentrations of the metals Ti, Cu, and Zn in the form of nano(particles) in structural and vehicle ash are possible sources of toxicity to diatom growth. This study provides valuable insights into the potential impacts of WUI fires on aquatic ecosystems and can inform management strategies aimed at reducing these impacts.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.