A Study on the Microstructure and Mechanical Properties of Improved 25Ni-20Cr Steel via in Situ Testing.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-03-07 DOI:10.3390/nano15060413
Penghui Lei, Xiaoyu Ji, Jiahao Chen, Yunhao Huang, Nan Lv, Yulin Fan, Yongchao Hou, Xinsheng Shi, Di Yun
{"title":"A Study on the Microstructure and Mechanical Properties of Improved 25Ni-20Cr Steel via in Situ Testing.","authors":"Penghui Lei, Xiaoyu Ji, Jiahao Chen, Yunhao Huang, Nan Lv, Yulin Fan, Yongchao Hou, Xinsheng Shi, Di Yun","doi":"10.3390/nano15060413","DOIUrl":null,"url":null,"abstract":"<p><p>To meet the application requirements for structural components in Gen-IV nuclear reactors, it is essential to improve the high-temperature mechanical properties of 25Ni-20Cr (S35140) austenitic stainless steel. In this research, an improved austenitic stainless steel (N-S35140), derived from S35140 steel, was investigated. The scanning transmission electron microscopy (STEM) results indicate that the addition of titanium (Ti) microalloying elements to S35140 steel led to the precipitation of new strengthening nano phases, including M(C, N), MC, MN and Ti(C, N), in N-S35140. These precipitates effectively compensated for the loss of high-temperature strength resulting from the substantial reduction in carbon content. During the in situ transmission electron microscopy (TEM) compressive process at room temperature, the yield strength of N-S35140 steel is 618.4 MPa. At room temperature, the tensile strength of N-S35140 steel is 638.5 MPa, with a yield strength of 392.8 MPa and an elongation of 32.7%, which surpasses those of S35140 steel at room temperature. N-S35140 steel exhibits a tensile strength of 330.6 MPa, a yield strength of 228.2 MPa, and an elongation of 51.4% during the in situ scanning electron microscopy (SEM) tensile test conducted at 650 °C. As a consequence, the improved N-S35140 steel demonstrates significantly enhanced mechanical properties compared to the original S35140 steel, positioning it as a promising candidate for structural components in Gen-IV nuclear reactors.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944395/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15060413","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To meet the application requirements for structural components in Gen-IV nuclear reactors, it is essential to improve the high-temperature mechanical properties of 25Ni-20Cr (S35140) austenitic stainless steel. In this research, an improved austenitic stainless steel (N-S35140), derived from S35140 steel, was investigated. The scanning transmission electron microscopy (STEM) results indicate that the addition of titanium (Ti) microalloying elements to S35140 steel led to the precipitation of new strengthening nano phases, including M(C, N), MC, MN and Ti(C, N), in N-S35140. These precipitates effectively compensated for the loss of high-temperature strength resulting from the substantial reduction in carbon content. During the in situ transmission electron microscopy (TEM) compressive process at room temperature, the yield strength of N-S35140 steel is 618.4 MPa. At room temperature, the tensile strength of N-S35140 steel is 638.5 MPa, with a yield strength of 392.8 MPa and an elongation of 32.7%, which surpasses those of S35140 steel at room temperature. N-S35140 steel exhibits a tensile strength of 330.6 MPa, a yield strength of 228.2 MPa, and an elongation of 51.4% during the in situ scanning electron microscopy (SEM) tensile test conducted at 650 °C. As a consequence, the improved N-S35140 steel demonstrates significantly enhanced mechanical properties compared to the original S35140 steel, positioning it as a promising candidate for structural components in Gen-IV nuclear reactors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信