Niels Holtgrefe, Katharina T Huber, Leo van Iersel, Mark Jones, Samuel Martin, Vincent Moulton
{"title":"Squirrel: Reconstructing Semi-directed Phylogenetic Level-1 Networks from Four-Leaved Networks or Sequence Alignments.","authors":"Niels Holtgrefe, Katharina T Huber, Leo van Iersel, Mark Jones, Samuel Martin, Vincent Moulton","doi":"10.1093/molbev/msaf067","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing availability of genomic data, biologists aim to find more accurate descriptions of evolutionary histories influenced by secondary contact, where diverging lineages reconnect before diverging again. Such reticulate evolutionary events can be more accurately represented in phylogenetic networks than in phylogenetic trees. Since the root location of phylogenetic networks cannot be inferred from biological data under several evolutionary models, we consider semi-directed (phylogenetic) networks: partially directed graphs without a root in which the directed edges represent reticulate evolutionary events. By specifying a known outgroup, the rooted topology can be recovered from such networks. We introduce the algorithm Squirrel (Semi-directed Quarnet-based Inference to Reconstruct Level-1 Networks) which constructs a semi-directed level-1 network from a full set of quarnets (four-leaf semi-directed networks). Our method also includes a heuristic to construct such a quarnet set directly from sequence alignments. We demonstrate Squirrel's performance through simulations and on real sequence data sets, the largest of which contains 29 aligned sequences close to 1.7 Mb long. The resulting networks are obtained on a standard laptop within a few minutes. Lastly, we prove that Squirrel is combinatorially consistent: given a full set of quarnets coming from a triangle-free semi-directed level-1 network, it is guaranteed to reconstruct the original network. Squirrel is implemented in Python, has an easy-to-use graphical user interface that takes sequence alignments or quarnets as input, and is freely available at https://github.com/nholtgrefe/squirrel.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf067","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing availability of genomic data, biologists aim to find more accurate descriptions of evolutionary histories influenced by secondary contact, where diverging lineages reconnect before diverging again. Such reticulate evolutionary events can be more accurately represented in phylogenetic networks than in phylogenetic trees. Since the root location of phylogenetic networks cannot be inferred from biological data under several evolutionary models, we consider semi-directed (phylogenetic) networks: partially directed graphs without a root in which the directed edges represent reticulate evolutionary events. By specifying a known outgroup, the rooted topology can be recovered from such networks. We introduce the algorithm Squirrel (Semi-directed Quarnet-based Inference to Reconstruct Level-1 Networks) which constructs a semi-directed level-1 network from a full set of quarnets (four-leaf semi-directed networks). Our method also includes a heuristic to construct such a quarnet set directly from sequence alignments. We demonstrate Squirrel's performance through simulations and on real sequence data sets, the largest of which contains 29 aligned sequences close to 1.7 Mb long. The resulting networks are obtained on a standard laptop within a few minutes. Lastly, we prove that Squirrel is combinatorially consistent: given a full set of quarnets coming from a triangle-free semi-directed level-1 network, it is guaranteed to reconstruct the original network. Squirrel is implemented in Python, has an easy-to-use graphical user interface that takes sequence alignments or quarnets as input, and is freely available at https://github.com/nholtgrefe/squirrel.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.