Squirrel: Reconstructing Semi-directed Phylogenetic Level-1 Networks from Four-Leaved Networks or Sequence Alignments.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Niels Holtgrefe, Katharina T Huber, Leo van Iersel, Mark Jones, Samuel Martin, Vincent Moulton
{"title":"Squirrel: Reconstructing Semi-directed Phylogenetic Level-1 Networks from Four-Leaved Networks or Sequence Alignments.","authors":"Niels Holtgrefe, Katharina T Huber, Leo van Iersel, Mark Jones, Samuel Martin, Vincent Moulton","doi":"10.1093/molbev/msaf067","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing availability of genomic data, biologists aim to find more accurate descriptions of evolutionary histories influenced by secondary contact, where diverging lineages reconnect before diverging again. Such reticulate evolutionary events can be more accurately represented in phylogenetic networks than in phylogenetic trees. Since the root location of phylogenetic networks cannot be inferred from biological data under several evolutionary models, we consider semi-directed (phylogenetic) networks: partially directed graphs without a root in which the directed edges represent reticulate evolutionary events. By specifying a known outgroup, the rooted topology can be recovered from such networks. We introduce the algorithm Squirrel (Semi-directed Quarnet-based Inference to Reconstruct Level-1 Networks) which constructs a semi-directed level-1 network from a full set of quarnets (four-leaf semi-directed networks). Our method also includes a heuristic to construct such a quarnet set directly from sequence alignments. We demonstrate Squirrel's performance through simulations and on real sequence data sets, the largest of which contains 29 aligned sequences close to 1.7 Mb long. The resulting networks are obtained on a standard laptop within a few minutes. Lastly, we prove that Squirrel is combinatorially consistent: given a full set of quarnets coming from a triangle-free semi-directed level-1 network, it is guaranteed to reconstruct the original network. Squirrel is implemented in Python, has an easy-to-use graphical user interface that takes sequence alignments or quarnets as input, and is freely available at https://github.com/nholtgrefe/squirrel.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf067","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing availability of genomic data, biologists aim to find more accurate descriptions of evolutionary histories influenced by secondary contact, where diverging lineages reconnect before diverging again. Such reticulate evolutionary events can be more accurately represented in phylogenetic networks than in phylogenetic trees. Since the root location of phylogenetic networks cannot be inferred from biological data under several evolutionary models, we consider semi-directed (phylogenetic) networks: partially directed graphs without a root in which the directed edges represent reticulate evolutionary events. By specifying a known outgroup, the rooted topology can be recovered from such networks. We introduce the algorithm Squirrel (Semi-directed Quarnet-based Inference to Reconstruct Level-1 Networks) which constructs a semi-directed level-1 network from a full set of quarnets (four-leaf semi-directed networks). Our method also includes a heuristic to construct such a quarnet set directly from sequence alignments. We demonstrate Squirrel's performance through simulations and on real sequence data sets, the largest of which contains 29 aligned sequences close to 1.7 Mb long. The resulting networks are obtained on a standard laptop within a few minutes. Lastly, we prove that Squirrel is combinatorially consistent: given a full set of quarnets coming from a triangle-free semi-directed level-1 network, it is guaranteed to reconstruct the original network. Squirrel is implemented in Python, has an easy-to-use graphical user interface that takes sequence alignments or quarnets as input, and is freely available at https://github.com/nholtgrefe/squirrel.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信