Ana Colomer-Boronat, Lisanne I Knol, Guillermo Peris, Laura Sanchez, Silvia Peluso, Pablo Tristan-Ramos, Ana Gazquez-Gutierrez, Priscilla Chin, Katrina Gordon, Guillermo Barturen, Robert E Hill, Francisco J Sanchez-Luque, Jose Luis Garcia-Perez, Alasdair Ivens, Sara Macias, Sara R Heras
{"title":"DGCR8 haploinsufficiency leads to primate-specific RNA dysregulation and pluripotency defects.","authors":"Ana Colomer-Boronat, Lisanne I Knol, Guillermo Peris, Laura Sanchez, Silvia Peluso, Pablo Tristan-Ramos, Ana Gazquez-Gutierrez, Priscilla Chin, Katrina Gordon, Guillermo Barturen, Robert E Hill, Francisco J Sanchez-Luque, Jose Luis Garcia-Perez, Alasdair Ivens, Sara Macias, Sara R Heras","doi":"10.1093/nar/gkaf197","DOIUrl":null,"url":null,"abstract":"<p><p>The 22q11.2 deletion syndrome (22qDS) is a human disorder where the majority of clinical manifestations originate during embryonic development. 22qDS is caused by a microdeletion in one chromosome 22, including DGCR8, an essential gene for microRNA (miRNA) production. However, the impact of DGCR8 hemizygosity on human development is still unclear. In this study, we generated two human pluripotent cell models containing a single functional DGCR8 allele to elucidate its role in early development. DGCR8+/- human embryonic stem cells (hESCs) showed increased apoptosis as well as self-renewal and differentiation defects in both the naïve and primed states. The expression of primate-specific miRNAs was largely affected, due to impaired miRNA processing and chromatin accessibility. DGCR8+/- hESCs also displayed a pronounced reduction in human endogenous retrovirus class H (HERVH) expression, a primate-specific retroelement essential for pluripotency maintenance. The reintroduction of miRNAs belonging to the primate-specific C19MC cluster as well as the miR-371-3 cluster rescued the defects of DGCR8+/- cells. Mechanistically, downregulation of HERVH by depletion of primate-specific miRNAs was mediated by KLF4. Altogether, we show that DGCR8 is haploinsufficient in humans and that miRNAs and transposable elements may have co-evolved in primates as part of an essential regulatory network to maintain stem cell identity.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 6","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941479/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf197","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The 22q11.2 deletion syndrome (22qDS) is a human disorder where the majority of clinical manifestations originate during embryonic development. 22qDS is caused by a microdeletion in one chromosome 22, including DGCR8, an essential gene for microRNA (miRNA) production. However, the impact of DGCR8 hemizygosity on human development is still unclear. In this study, we generated two human pluripotent cell models containing a single functional DGCR8 allele to elucidate its role in early development. DGCR8+/- human embryonic stem cells (hESCs) showed increased apoptosis as well as self-renewal and differentiation defects in both the naïve and primed states. The expression of primate-specific miRNAs was largely affected, due to impaired miRNA processing and chromatin accessibility. DGCR8+/- hESCs also displayed a pronounced reduction in human endogenous retrovirus class H (HERVH) expression, a primate-specific retroelement essential for pluripotency maintenance. The reintroduction of miRNAs belonging to the primate-specific C19MC cluster as well as the miR-371-3 cluster rescued the defects of DGCR8+/- cells. Mechanistically, downregulation of HERVH by depletion of primate-specific miRNAs was mediated by KLF4. Altogether, we show that DGCR8 is haploinsufficient in humans and that miRNAs and transposable elements may have co-evolved in primates as part of an essential regulatory network to maintain stem cell identity.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.