Recent Advances in Nanostructured Conversion-Type Cathodes: Fluorides and Sulfides.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-03-08 DOI:10.3390/nano15060420
Mobinul Islam, Md Shahriar Ahmed, Sua Yun, Basit Ali, Hae-Yong Kim, Kyung-Wan Nam
{"title":"Recent Advances in Nanostructured Conversion-Type Cathodes: Fluorides and Sulfides.","authors":"Mobinul Islam, Md Shahriar Ahmed, Sua Yun, Basit Ali, Hae-Yong Kim, Kyung-Wan Nam","doi":"10.3390/nano15060420","DOIUrl":null,"url":null,"abstract":"<p><p>This review paper explores the emerging field of conversion cathode materials, which hold significant promises for advancing the performance of lithium-ion (LIBs) and lithium-sulfur batteries (LSBs). Traditional cathode materials of LIBs, such as lithium cobalt oxide, have reached their limits in terms of energy density and capacity, driving the search for alternatives that can meet the increasing demands of modern technology, including electric vehicles and renewable energy systems. Conversion cathodes operate through a mechanism involving complete redox reactions, transforming into different phases, which enables the storage of more lithium ions and results in higher theoretical capacities compared to conventional intercalation materials. This study examines various conversion materials, including metal oxides, sulfides, and fluorides, highlighting their potential to significantly enhance energy density. Despite their advantages, conversion cathodes face numerous challenges, such as poor conductivity, significant volume changes during cycling, and issues with reversibility and stability. This review discusses current nanoengineering strategies employed to address these challenges, including nano structuring, composite formulation, and electrolyte optimization. By assessing recent research and developments in conversion cathode technology, this paper aims to provide a comprehensive overview of their potential to revolutionize lithium-ion batteries and contribute to the future of energy storage solutions.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15060420","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This review paper explores the emerging field of conversion cathode materials, which hold significant promises for advancing the performance of lithium-ion (LIBs) and lithium-sulfur batteries (LSBs). Traditional cathode materials of LIBs, such as lithium cobalt oxide, have reached their limits in terms of energy density and capacity, driving the search for alternatives that can meet the increasing demands of modern technology, including electric vehicles and renewable energy systems. Conversion cathodes operate through a mechanism involving complete redox reactions, transforming into different phases, which enables the storage of more lithium ions and results in higher theoretical capacities compared to conventional intercalation materials. This study examines various conversion materials, including metal oxides, sulfides, and fluorides, highlighting their potential to significantly enhance energy density. Despite their advantages, conversion cathodes face numerous challenges, such as poor conductivity, significant volume changes during cycling, and issues with reversibility and stability. This review discusses current nanoengineering strategies employed to address these challenges, including nano structuring, composite formulation, and electrolyte optimization. By assessing recent research and developments in conversion cathode technology, this paper aims to provide a comprehensive overview of their potential to revolutionize lithium-ion batteries and contribute to the future of energy storage solutions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信