Kartheyaene Jayaprakash Demirel, Alessandra Neves Guimaraes, Isak Demirel
{"title":"The Role of Caspase-1 and Caspase-4 in Modulating Gingival Epithelial Cell Responses to <i>Aggregatibacter actinomycetemcomitans</i> Infection.","authors":"Kartheyaene Jayaprakash Demirel, Alessandra Neves Guimaraes, Isak Demirel","doi":"10.3390/pathogens14030295","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis is a chronic inflammatory disease characterized by bacterial infection and immune dysregulation. <i>Aggregatibacter actinomycetemcomitans</i> (<i>A. actinomycetemcomitans</i>) is a key pathogen linked to disease progression. Caspase-1 and caspase-4 regulate inflammasome activation and cytokine release, yet their roles in gingival epithelial immunity remain unclear. The aim of this study was to elucidate the involvement of caspase-1 and caspase-4 in regulating the immune response to <i>A. actinomycetemcomitans</i> infection in gingival epithelial cells. Human gingival epithelial cells (Ca9-22) and caspase-1- and caspase-4-deficient cells were infected with <i>A. actinomycetemcomitans</i> for 24 h. Inflammatory mediator release was analyzed using Olink proteomics. Bacterial colonization and invasion were assessed using fluorescence-based assays and gentamicin protection assays. Caspase-1- and caspase-4-deficient cells showed significantly altered cytokine and chemokine profiles after infection with <i>A. actinomycetemcomitans,</i> showing reduced IL-17C and IL-18 release. We also found an increased release of TGF-α and LIF from caspase-4-deficient cells, along with elevated levels of the chemokines IL-8, CXCL9, and CXCL10. Additionally, both caspase-1- and caspase-4-deficient cells showed increased bacterial colonization and invasion, particularly in caspase-4-deficient cells. These findings suggest that caspase-1 and caspase-4 play distinct yet essential roles in gingival epithelial immunity, regulating cytokine release, barrier integrity, and defense against <i>A. actinomycetemcomitans</i> colonization.</p>","PeriodicalId":19758,"journal":{"name":"Pathogens","volume":"14 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945752/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pathogens14030295","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontitis is a chronic inflammatory disease characterized by bacterial infection and immune dysregulation. Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) is a key pathogen linked to disease progression. Caspase-1 and caspase-4 regulate inflammasome activation and cytokine release, yet their roles in gingival epithelial immunity remain unclear. The aim of this study was to elucidate the involvement of caspase-1 and caspase-4 in regulating the immune response to A. actinomycetemcomitans infection in gingival epithelial cells. Human gingival epithelial cells (Ca9-22) and caspase-1- and caspase-4-deficient cells were infected with A. actinomycetemcomitans for 24 h. Inflammatory mediator release was analyzed using Olink proteomics. Bacterial colonization and invasion were assessed using fluorescence-based assays and gentamicin protection assays. Caspase-1- and caspase-4-deficient cells showed significantly altered cytokine and chemokine profiles after infection with A. actinomycetemcomitans, showing reduced IL-17C and IL-18 release. We also found an increased release of TGF-α and LIF from caspase-4-deficient cells, along with elevated levels of the chemokines IL-8, CXCL9, and CXCL10. Additionally, both caspase-1- and caspase-4-deficient cells showed increased bacterial colonization and invasion, particularly in caspase-4-deficient cells. These findings suggest that caspase-1 and caspase-4 play distinct yet essential roles in gingival epithelial immunity, regulating cytokine release, barrier integrity, and defense against A. actinomycetemcomitans colonization.
期刊介绍:
Pathogens (ISSN 2076-0817) publishes reviews, regular research papers and short notes on all aspects of pathogens and pathogen-host interactions. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.